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a b s t r a c t

UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP),
which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner
membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in pri-
mary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and
hydrogen peroxide (H2O2) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cys-
teine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through
lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to
UVB- or H2O2-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or
H2O2-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes
caused spontaneous keratinocytes cell death. These results suggest Cyp-D’s critical role in UVB/oxidative
stress-induced skin cell death.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The ultraviolet radiation (UVR) is the major environmental fac-
tor that affects the functions and survival of many skin cell types.
Excessive UVR contributes to skin cancers such as basal cell carci-
noma, squamous cell carcinoma and malignant melanoma [1–3].
Acute responses of human skin to UVR include photo-damage, ery-
thema, mutation, immune-suppression, vitamin D synthesis and
tanning. Chronic UVR effects include immune-suppression,
photo-aging and photo-carcinogenesis [1–3]. The UVR that reaches
human skin consists mainly of long wavelength UVA (320–
400 nm), together with only a minority of short wavelength UVB
(280–320 nm) [3]. UVC (200–280 nm) is screened out by atmo-
spheric oxygen through the ozone layer absorption [4]. Although
the amount of UVB is much less than UVA (estimated at 5%) in
UVR that reaches human skin, it is more cytotoxic and mutagenic
than UVA, and is 3–4 orders of magnitude more effective per unit

physical dose (J cm�2) than UVA for DNA damage [1–4]. As such,
our group has been focusing on the molecular mechanisms of
UVB-induced skin damage [5–8].

The mitochondrial permeability transition pore (mPTP) plays a
pivotal role in both necrotic and apoptotic neuronal cell death. Var-
ious stress conditions open mPTP to cause the membrane potential
collapses, which induces apoptotic cell death by releasing proteins
from the inner membrane space [9–11]. Cyclophilin D (Cyp-D), a
peptidylprolyl isomerase, resides in the mitochondrial matrix and
associates with the inner mitochondrial membrane [12–14]. Studies
have confirmed that oxidative and other cellular stresses promote
Cyp-D translocation to the inner membrane of mitochondrion,
which triggers the opening of the mPTP and cell death [12–14].
And a genetic deficiency of CypD inhibits mPTP opening and pro-
tects from Ca2+- and oxidative stress-induced cell death [15–17].
In the current study, we are set to understand the potential role of
Cyp-D in UVB-induced skin cell damage.

2. Materials and methods

2.1. Chemicals and reagents

Cyclosporine A (CsA) and tumor-necrosis factor-a (TNF-a) were
obtained from Sigma (Sigma, St. Louis, MO); Anti-Erk1/2, tubulin,
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rabbit/mouse IgG-horseradish peroxidase (IgG-HRP) were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA). Cyp-D
shRNA (sc-44892-V) and scramble shRNA (sc-108080) lentiviral
particles were obtained from Santa Cruz Biotech (Santa Cruz, CA).

2.2. Cell culture and UVB radiation

Primary human skin keratinocytes (ATCC, PCS-200-010, Beijing,
China) were maintained in a Dermal Cell Basal Medium (ATCC,
PCS-200-030, Beijing, China), supplemented with a Keratinocyte
Growth Kit (ATCC PCS-200-040, Beijing, China), penicillin/strepto-
mycin (1:100, Sigma, St. Louis, MO), in a CO2 incubator at 37 �C.
HaCaT keratinocytes cell line was cultured as previous reported
[6,8]. UVB radiation equipments and procedure were described in
[8,18].

2.3. Live cell counting by trypan blue staining

As previous reported [8,18], the total number of viable skin
keratinocytes (trypan blue positive) after indicated treatment/s
was counted, and the percentage (%) of viable cells was calculated
by the number of the trypan blue stained cells divided by the total
number of the cells.

2.4. Clonogenicity assay

Primary cultured skin keratinocytes (1 � 104) were suspended
in 1 ml of culture medium (ATCC, PCS-200-030+040, Shanghai, Chi-
na) and with indicated treatments or vehicle controls. The cell sus-
pension was then added on top of a pre-solidified 1% agar in a
100 mm culture dish. The medium was replaced every two days.
After 8 days of incubation, colonies were photographed at 4�. Col-
onies larger than 50 lm in diameter were counted.

2.5. Generation of Cyp-D knockdown stable skin keratinocytes by
lentiviral shRNA transfection

Cyp-D shRNA containing lentiviral particles (20 ll/ml) were
added to primary cultured human skin keratinocytes for 48 h.
Afterwards, puromycin (2 lg/ml)-containing fresh medium was
added every 2–3 days until resistant stable cells were formed.
The expression level of CHOP was detected by Western-Blots. Only
Cyp-D deficient (knockdown) stable cells were selected for further
experiments. Same amount of scramble shRNA lentiviral particles
were added in control cells.

2.6. Cyp-D vector construction and transfection

Cyclophilin D cDNA was PCR amplified from a PC12 cell cDNA
library using a pair of specific primers (50-GCA CCGAATTCATGC-
TAGCTCTGC-30 and 50-GGCTTGAATTCTTAGCTCAACTGGCC-30) to
introduce EcoRI flanking linkers before and after the CypD coding
sequence. The fragment was cut with EcoRI (Invitrogen) and li-
gated into the EcoRI site of the pSuper-puromycin vector (Clon-
tech). The insertion and correct orientation of CypD was verified
by PCR and restriction mapping. Lipofactamine (Invitrogen) proto-
col was used to transfect vector or the plasmid [6,19,20]. Stable
cells were selected by puromycin. The resulting pSuper-CypD con-
struct was subjected to Western-Blots detecting Cyp-D expression
in stable cells.

Western Blot, analysis of cell death by propidium iodide (PI)
fluorescence-activated cell sorting (FACS), and cell viability assay
(‘‘MTT’’ assay) were described in our previous studies [6,19–21].

2.7. Statistical analysis

Individual culture dishes or wells were analyzed separately. In
each experiment a minimum of three wells/dishes of each treat-
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Fig. 1. UVB radiated skin keratinocytes show Cyclophilin D upregulation. Representative Western-Blots showing the expression of Cyclophilin D (Cyp-D) and tubulin (equal
loading) in primary cultured human skin keratinocytes and HaCaT cell line after indicated UVB radiation or H2O2 treatment (A). Representative western-blots showing the
expression of Cyp-D and tubulin in UVB (30 mJ/cm2, 24 h) or H2O2 (0.5 mM, 24 h) treated skin keratinocytes, with or without NAC pretreatment (0.5 mM, 1 h pretreatment)
(B). Representative Western-Blots showed the expression of Cyp-D and tubulin in primary cultured skin keratinocytes with indicated TNF-a treatment (C). The blots in this
figure were quantified by Image J software. Experiments in this figure were repeated three times to insure consistency of results.
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