ELSEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Capsicum annuum WRKYb transcription factor that binds to the CaPR-10 promoter functions as a positive regulator in innate immunity upon TMV infection

Jee Hyuck Lim^a, Chang-Jin Park^b, Sung Un Huh^a, La Mee Choi^a, Gil Je Lee^a, Young Jin Kim^a, Kyung-Hee Paek^{a,*}

ARTICLE INFO

Article history: Received 28 June 2011 Available online 13 July 2011

Keywords:
Hot pepper (Capsicum annuum L.)
CaPR-10 promoter
WRKY transcription factor
VIGS
Tobacco mosaic virus

ABSTRACT

In plant, some WRKY transcription factors are known to play an important role in the transcriptional reprogramming associated with the immune response. By using WRKY-domain-specific differential display procedure, we isolated CaWRKYb gene, which is rapidly induced during an incompatible interaction between hot pepper and Tobacco mosaic virus (TMV) pathotype P_0 infection. The recombinant CaWRKYb bound to the W box-containing CaPR-10 promoter probes efficiently and the specificity of binding was confirmed by mutant study and competition with cold oligonucleotides. Also, in GUS reporter activity assay using Arabidopsis protoplasts with the CaPR-10 promoter, GUS activity was increased in the presence of CaWRKYb. And CaWRKYb-knockdown plant showed reduced number of hypersensitive response local lesions upon $TMV-P_0$ infection. Furthermore, CaWRKYb-knockdown plant exhibited compromised resistance to $TMV-P_0$ by accumulating more TMV, apparently through decreased expression of CaPR-10, CaPR-1, and CaPR-5. These results suggest that CaWRKYb is involved as a positive transcription factor in defense-related signal transduction pathways in hot pepper.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Transcriptional regulation of gene expression is mediated largely by the level and/or activity of sequence-specific DNA-binding transcription factors [1]. And molecular and genomic analyses revealed several classes of cis-acting elements in plant stressresponsive promoters, including GCC, W, and as-1 boxes [2]. The WRKY proteins are a family of plant-specific transcription factors that contain the WRKYGOK core sequence followed by a zinc-finger motif [3]. WRKY DNA-binding proteins recognize various W box elements with T/TGAC/C core sequences that are present in the promoters of many pathogenesis-related (PR) genes [2,4–7]. Thus, the WRKY DNA-binding proteins may function as common transcriptional regulators that regulate the expression of PR genes throughout the plant species. In addition to their DNA-binding ability, WRKY proteins share other features of transcription factors, such as nuclear localization and transcription activation/repression capability of target genes [8].

The Arabidopsis AtWRKY23 is up-regulated almost immediately upon nematode infection and of which gene expression knockdown plants show increased resistance to the cyst nematode Heterodera schachtii infection [9]. Virus-induced gene silencing (VIGS) of three WRKY genes (NbWRKY1, NbWRKY2, and NbWRKY3) in to-

* Corresponding author. Fax: +82 2 928 1274. E-mail address: khpaek95@korea.ac.kr (K.-H. Paek). bacco led to compromised *N*-gene-mediated resistance to *Tobacco mosaic virus* [10]. Silencing of *NbWRKY8* decreased the expression of defense-related genes and increased disease susceptibility to the pathogens *Phytophthora infestans* and *Colletotrichum orbiculare* [11]. In rice it was revealed that the pair of allelic genes *OsWR-KY45-1* and *OsWRKY45-2*, which encode proteins differing in ten amino acids, play opposite roles in rice-bacteria interactions [12]. *OsWRKY53*, a chitin oligosaccharide elicitor-responsive gene, has been found to be involved in defense responses in rice [13]. *CaWRKYa* isolated from hot pepper has a positive role for defense response against viral and bacterial pathogens [7]. VIGS of *CaW-RKY1* in chili pepper leaves resulted in decreased growth of *Xanthomonas axonopodis* pv. *Vesicatoria race* 1 [14].

In this study, *CaWRKYb* was isolated from hot pepper encoding protein which can bind to the promoter of *CaPR-10* and investigated for its role in innate immune response. Also, the *CaWRKYb*-knockdown plant experiments indicated that *CaWRKYb* functions as a positive transcription regulator of several *PR* genes including *CaPR-10* upon TMV-P₀ infection.

2. Materials and methods

2.1. Isolation of CaPR-10 promoter

Using the *CaPR-10*-specific primer (GSP1 and GSP2; Supplementary Fig. 1), the promoter region was obtained by Universal

^a School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea

^b Department of Plant Pathology, University of California, Davis, CA 95616, USA

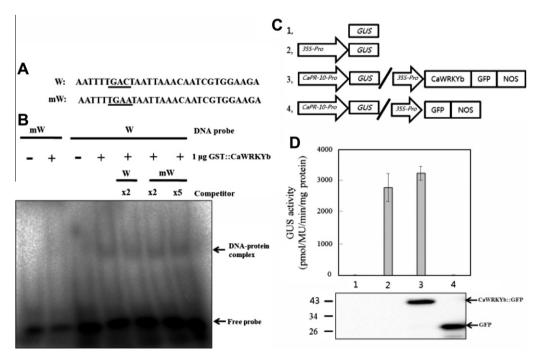
Genome Walker™ Kit (CLONTECH, USA) according to the manufacturer's instructions. The *CaPR-10* GSP1 and GSP2 are 5′-CCCCAT-CAAGGCTATTCAAAGCT-3′, and 5′-CTTTACTGACAAGTCCACAGCCTC AGTTG-3′, respectively. The promoter was analyzed for its *cis*-acting elements using Web Signal Scan Program: PLACE (http://www.dna.affrc.go.jp/htdocs/PLACE/).

2.2. Biotin-labeled elution of CaPR-10 promoter with CaWRKYb

Biotin-labeled *CaPR-10* promoter was bound to the streptavidin magnesphere paramagnetic particles and then recombinant CaW-RKYb protein was added along with the vector control. The bound protein with *CaPR-10* promoter was eluted and confirmed. Analysis was performed by using MagneSphere Magnetic Separation Products kit (Promega, USA).

2.3. Electrophoretic mobility shift assay (EMSA)

Mobility shift assays were performed essentially as described previously [7,15]. The binding reaction mixture contained 4 μ l of buffer A (20 mM HEPS pH 7.8, 100 mM KCl, 2 mM DTT, 1 mM EDTA, 20% glycerol), 0.5 μ g of poly (dI–dC), and 5 μ g of BSA. Two complementary strands of the oligonucleotides were annealed and then labeled at the 5′-end using T4 polynucleotide kinase. Two hundreds nanogram of GST-CaWRKYb fusion protein and 2 ng of double stranded synthetic oligonucleotide labeled with 32 P- γ -ATP using T4 polynucleotide kinase were mixed (Sigma, USA). DNA–protein interaction complexes were allowed to form at room temperature for 30 min and then resolved on a 10% non-denaturing polyacrylamide gel in 0.5× TBE.


2.4. GUS promoter activity assay and protein gel blot analysis

Plasmids were introduced into Arabidopsis protoplasts by polyethylene glycol-mediated transformation [16]. GUS promoter activity analysis was carried out as described previously [17]. For protein gel blot analysis, 20 µg of total protein was prepared from the PEG-transfected protoplasts and separated by 12% SDS-PAGE. The proteins were then blotted onto a Hybond-P membrane using SemiPhor Semi-Dry Transfer Unit (Amersham Biosciences, UK). Protein gel blot analysis was carried out using the anti-GFP (Clontech, Japan). The protein blots were developed with an ECL detection kit (Amersham Phamacia Biotech, UK), and images were obtained using an LAS3000 image-capture system (Fujifilm, Japan).

2.5. RT-PCR, and quantitative real-time RT-PCR

The reverse transcriptase-polymerase chain reaction (RT-PCR) analyses were done as described previously [18]. Total RNAs were extracted from the leaves after each treatment and the reactions were conducted in accordance with the instructions provided in the manual for QuantumRNA™ Universal 18S Internal Standards (Ambion, USA) or oligo-dT. For *CaWRKYb* detection, a 112 bp fragment of *CaWRKYb* cDNA was amplified via PCR. *CaActin* was served as an internal control for the normalization.

Quantitative real-time PCR was performed to monitor quantitative levels of gene expression. Each reaction mix (20 μ l) contained 10 μ l of KAPA SYBR® FAST qPCR Kit (KAPA Biosystems, USA) and 0.2 μ M gene specific primers. Thermal cycling conditions consisted of 5 min at 95 °C, 40 cycles of 30 s at 95 °C, 30 s at 50 °C, and 30 s at 72 °C, and 10 min at 72 °C. Data acquisition and analysis were performed by using Roche LightCycler® 480 software (Roche, Swiss). Transcript levels were normalized to the expression of *CaActin* gene measured in the same samples.

Fig. 1. In vitro binding assay of CaWRKYb to W box-containing CaPR-10 promoter and transactivation of CaPR-10 promoter by CaWRKYb. (A) Nucleotide sequences of W box-containing CaPR-10 DNA probe; TGAC (W) and TGAA motifs in mutant (mW) are underlined. (B) EMSA was performed using freshly prepared recombinant CaWRKYb protein and ³²P-labeled W box probe. The specificity of W box binding activity was demonstrated by competition assay using excess unlabeled W and mW DNAs. DNA binding complex of CaWRKYb is indicated by the arrow (upper). (C) Schematic representation of CaPR-10 promoter-GUS and CaWRKYb::GFP construct with control. (D) Transactivation of CaPR-10 promoter::GUS gene expression by CaWRKYb in Arabidopsis protoplasts. A transient assay of GUS activities was carried out in protoplasts of Arabidopsis leaves 16 h after transfection with plasmid DNA. Western blot analysis was carried out to confirm expression of proteins using anti-GFP antibody (lower panel). Experiments were performed three times and similar results were obtained each time.

Download English Version:

https://daneshyari.com/en/article/1930420

Download Persian Version:

https://daneshyari.com/article/1930420

<u>Daneshyari.com</u>