Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

The prostaglandin transporter PGT transports PGH₂

Yuling Chi^a, Victor L. Schuster^{a,b,*}

^a Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, Bronx, NY 10461, USA ^b Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA

ARTICLE INFO

Article history: Received 8 March 2010 Available online 25 March 2010

Keywords: Prostaglandin H₂ Prostaglandin transporter Kinetics

ABSTRACT

Prostaglandin H₂ not only serves as the common precursor of all other PGs, but also directly triggers signals (e.g. platelet aggregation), depending on its location and translocation. The prostaglandin carrier PGT mediates the transport of several prostanoids, such as PGE₂, and PGF₂. Here we used PGT in the plasma membrane as a model system to test the hypothesis that PGT also transports PGH₂. Using wild-type and PGT-expressing MDCK cells, we show that PGH₂ uptake is mediated both by simple diffusion and by PGT. The PGH₂ influx permeability coefficient for diffusion is $(5.66 \pm 0.63) \times 10^{-6}$ cm/s. The kinetic parameters of PGH₂ transport by PGT are $K_m = 376 \pm 34$ nM and $V_{max} = 210.2 \pm 11.4$ fmol/mg protein/s. PGH₂ transport by PGT can be inhibited by excess PGE₂ or by a PGT inhibitor. We conclude that PGT may play a role in transporting PGH₂ across cellular membranes.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Prostaglandin H₂ (PGH₂) is the common precursor of all other PGs (PGE₂, PGI₂, PGD₂, and PGF_{2α}) and thromboxane A₂ (TxA₂). It is converted to these PGs by the specific terminal synthases in the cytoplasm [1–6]. Besides serving as a common precursor, extracellular PGH₂ can directly trigger signals including Ca²⁺ release, serotonin release, vasoconstriction, and platelet aggregation [7–10]. The signals induced by extracellular PGH₂ can therefore oppose the signals resulting from intracellular PGH₂, such as formation of PGI₂, the most potent endogenous inhibitor of platelet aggregation [11,12]. Thus the net result of PGH₂ depends on its localization. Of interest, Kent et al. [9] reported that endothelial cells exposed to PGH₂ produced PGI₂, suggesting that PGH₂ might be taken up into endothelial cells and converted to PGI₂ by PGI₂ synthase. This raises the question of how PGH₂ translocation occurs.

The prostaglandin transporter (PGT) has been shown to transport several prostaglandins, including PGE_2 [13,14]. PGT mediates the active uptake of PGE_2 into the cell against a concentration gradient [15]. Based on the structural similarity between PGH_2 and PGE_2 , as shown in Fig. 2C and D, we hypothesized that PGT might also transport PGH₂. Using MDCK cells stably expressing PGT, as

previously reported [16], we conducted a detailed investigation of the kinetics of PGH_2 transport by PGT. The competition of transport by PGT between PGH_2 and PGE_2 , and the inhibition of PGH_2 transport by our newly identified PGT inhibitor, TGBz T34 [15], confirmed that PGH_2 is, indeed, a substrate of PGT.

2. Materials and methods

MDCK cells were stably transfected with the GFP-tagged PGT in our laboratory [16]. Tritium labeled PGE₂ ([³H]PGE₂) and PGH₂ ([³H]PGH₂) were purchased from PerkinElmer and CaymanChem, respectively. Unlabeled PGE₂ was obtained from CaymanChem.

2.1. Time course of PGH₂ or PGE₂ transport

MDCK cells were seeded at 15–20% confluence on 24-well plates. The day on which the cells were seeded was considered day one. PGE₂ uptake experiments were conducted on day 4. All of the PGH₂ or PGE₂ uptake experiments were conducted at room temperature. On day 4, cells were washed twice with Waymouth buffer (135 mM NaCl, 13 mM H–Hepes, 13 mM Na–Hepes, 2.5 mM CaCl₂, 1.2 mM MgCl₂, 0.8 mM MgSO₄, 5 mM KCl, and 28 mM D-glucose). Then 200 µL of Waymouth buffer containing 1 µM [³H]PGH₂ or 1 nM [³H]PGE₂ were added to each well. At the designated time, the uptake of [³H]PGH₂ or [³H]PGE₂ was stopped by aspiration of uptake buffer, followed immediately by two washes with 500 µL of chilled Waymouth buffer. Cells were then lysed with 100 µL lysis buffer containing 0.25% SDS and 0.05 N NaOH. 1.5 mL of scintillation solution was added to each

Abbreviations: PG, prostaglandin; PGT, prostaglandin transporter; PGH₂, prostaglandin H₂; PGE₂, prostaglandin E₂; AA, arachidonic acid; TxA₂, thromboxane A₂; COX, cyclooxygenase; ER, endoplasmic reticulum

^{*} Corresponding author at: Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Fax: +1 718 430 8963. *E-mail address*: victor.schuster@einstein.yu.edu (V.L. Schuster).

⁰⁰⁰⁶⁻²⁹¹X/\$ - see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2010.03.108

well, and intracellular $[{}^{3}H]PGH_{2}$ or $[{}^{3}H]PGE_{2}$ was counted by MicroBeta scintillation counter.

To obtain the time course of PGE₂ transport in the presence of PGH₂ or TGBz T34, MDCK cells were incubated in Waymouth buffer containing 1 nM [³H]PGE₂ at room temperature for 9 min to reach the maximum intracellular level. Thereafter, either PGH₂ or TGBz T34 was added to the uptake buffer at a final concentration of 2.5 or 25 μ M. At the designated time, the uptake of [³H]PGE₂ was stopped and uptake was assessed as described above. For the time course of PGH₂ uptake in the presence of TGBz T34, MDCK cells were incubated in Waymouth buffer containing 1 μ M [³H]PGH₂ at room temperature for 120 min to reach the maximum intracellular level. At 120 min, TGBz T34 was added to the uptake buffer at a final concentration of 25 μ M. Then the transport was stopped at varied time points and uptake was quantified as above.

2.2. Measurements of kinetic parameters of PGE₂ and PGH₂

We repeated the time courses of PGE₂ or PGH₂ uptake in the presence or absence of 25 μ M TGBz T34 at various initial extracellular concentrations of PGE₂ (0, 20, 40, 80, 120, 160, and 300 nM) or PGH₂ (0, 10, 25, 50, 100, 250, 500, and 1000 nM). In the case of PGE₂, at low concentrations, the extracellular concentrations were taken as ³H labeled PGE₂, which has a specific activity of 500 μ Ci/mol. At high concentrations of PGE₂, we made a mixture of ³H labeled PGE₂ to a final specific activity of 25 μ Ci/mol.

The initial velocities at various extracellular concentrations of PGE_2 or PGH_2 were determined from the PGE_2 uptake in the first 2 min or the PGH_2 uptake in the first 3 min, in the presence or absence of TGBz T34; these were linear over the early time course of PGE_2 or PGH_2 uptake. The permeability coefficient of PGH_2 or PGE_2 influx (P_{in}) was obtained by linear regression fit of the initial rate in the presence of TGBz T34 versus extracellular PGE_2 or PGH_2 concentration.

We subtracted the initial velocities in the presence of TGBz T34 from those in the absence of TGBz T34. These resulted initial velocities were used to obtain K_m and V_{max} values by nonlinear regression fit of the initial rate versus extracellular PGE₂ or PGH₂ concentration to the Michaelis–Menten equation ($V_i = V_{max}$ [S]/([S] + K_m)).

3. Results

3.1. Time course of PGH₂ uptake

The time course of PGH_2 uptake by MDCK cells expressing PGT is shown in Fig. 1A. The circles represent the total PGH_2 uptake when the cells were incubated with 1 μ M [³H]PGH₂. Squares indi-

cate experiments in which cells were incubated with $1 \mu M$ [³H]PGH₂ in the presence of 25 μM TGBz T34, our newly identified PGT inhibitor [15]. The line with diamonds represents PGH₂ total uptake minus PGH₂ influx when the PGT inhibitor was applied, which is equivalent to PGT-mediated uptake. The "overshoot" is characteristic of PGT [17].

Fig. 1B shows PGH₂ uptake by wild-type MDCK cells. The inset of Fig. 1B shows the time course of PGH₂ uptake by wild-type MDCK cells for the first 15 min. It is evident that PGH₂ influx in PGT-expressing cells plus the inhibitor TGBZ T34 (squares in Fig. 1A) is almost identical to the data of Fig. 1B; each of these represents PGH₂ influx by simple diffusion. Since the pattern of total PGH₂ uptake was similar to that of PGT-mediated uptake, we conclude that PGT mediates the majority of PGH₂ uptake.

3.2. Kinetics of PGH₂ uptake in comparison with PGE₂ uptake

To obtain detailed kinetic parameters of PGH₂ influx, we measured initial rates of PGH₂ uptake at various extracellular PGH₂ concentrations in the presence and absence of TGBz T34. In the presence of PGT inhibitor, the plot of the initial rates of PGH₂ uptake versus concentration could be fitted with a straight line (squares in Fig. 2A), indicating that this part of influx was caused by simple diffusion. We calculated the permeability coefficient of PGH₂ influx (P_{in}) by diffusion by dividing the slope of this linear line by the total cell surface. P_{in} for PGH₂ was (5.66 ± 0.63) × 10⁻⁶ cm/s (Table 1).

In the absence of TGBZ T34, the plot with circles depicts the total PGH₂ uptake (Fig. 2A). The PGT-mediated rates (diamonds) from Fig. 2A were obtained by subtracting the influx by diffusion (squares) from the total influx (circles). When plotted against PGH₂ concentration, they could be fitted by the Michaelis–Menton equation (Fig. 2A). The binding constant of PGH₂ to PGT, K_m , and the maximum velocity, V_{max} , are listed in Table 1. PGT-mediated transport constituted 80% of PGH₂ influx; the remainder was mediated by diffusion.

Using the same method, we conducted a similar investigation of the kinetics of PGE₂ uptake. As shown in Fig. 2B, circles depict the total PGE₂ uptake in the absence of TGBz T34, and squares depict the PGE₂ influx in the presence of TGBz T34. The plot of the latter is linear and shows the component of PGE₂ influx caused by diffusion. $P_{\rm in}$ for PGE₂, was $(1.06 \pm 0.13) \times 10^{-6}$ cm/s (Table 1). Using the same methods as for analyzing PGH₂ kinetics, we generated the PGT-mediated uptake component (diamonds), which could be fitted by the Michaelis–Menton equation. The binding constant of PGE₂ to PGT, $K_{\rm m}$, and the maximum velocity, $V_{\rm max}$, are listed in Table 1. As opposed to the case with PGH₂, PGT-mediated PGE₂ transport was almost identical to total PGE₂ uptake, suggesting

Fig. 1. (A) Time course of PGH₂ uptake by PGT-expressing MDCK cells in the presence (squares) and absence (circles) of 25 μ M TGBz T34. The diamond line is formed by subtracting intracellular PGH₂ in the absence of TGBz T34 (circles) by intracellular PGH₂ in the presence of TGBz T34 (squares). (B) Time course of PGH₂ uptake by wild-type MDCK cells. In both (A) and (B), the values are presented as means ± SD of three individual replicates.

Download English Version:

https://daneshyari.com/en/article/1932005

Download Persian Version:

https://daneshyari.com/article/1932005

Daneshyari.com