Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

B Biochemical and Biophysical Research Communication Commu

Green tea epigallocatechin-3-gallate inhibits microsomal prostaglandin E_2 synthase-1

Andreas Koeberle^a, Julia Bauer^a, Moritz Verhoff^a, Marika Hoffmann^b, Hinnak Northoff^c, Oliver Werz^{a,*}

^a Department for Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany ^b Institute of Pharmaceutical Chemistry/ZAFES/LIFF, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany ^c Institute for Clinical and Experimental Transfusion Medicine, University Medical Center Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany

ARTICLE INFO

Article history: Received 31 July 2009 Available online 6 August 2009

Keywords: Prostaglandin Microsomal prostaglandin E₂ synthase-1 Cyclooxygenase *Camellia sinensis* Epigallocatechin-3-gallate

ABSTRACT

Prostaglandin (PG)E₂ is a critical lipid mediator connecting chronic inflammation to cancer. The anti-carcinogenic epigallocatechin-3-gallate (EGCG) from green tea (*Camellia sinensis*) suppresses cellular PGE₂ biosynthesis, but the underlying molecular mechanisms are unclear. Here, we investigated the interference of EGCG with enzymes involved in PGE₂ biosynthesis, namely cytosolic phospholipase (cPL)A₂, cyclooxygenase (COX)-1 and -2, and microsomal prostaglandin E₂ synthase-1 (mPGES-1). EGCG failed to significantly inhibit isolated COX-2 and cPLA₂ up to 30 μ M and moderately blocked isolated COX-1 (IC₅₀ > 30 μ M). However, EGCG efficiently inhibited the transformation of PGH₂ to PGE₂ catalyzed by mPGES-1 (IC₅₀ = 1.8 μ M). In lipopolysaccharide-stimulated human whole blood, EGCG significantly inhibited PGE₂ generation, whereas the concomitant synthesis of other prostanoids (i.e., 12(*S*)hydroxy-5-cis-8,10-trans-heptadecatrienoic acid and 6-keto PGF₁₂) was not suppressed. Conclusively, mPGES-1 is a molecular target of EGCG, and inhibition of mPGES-1 is seemingly the predominant mechanism underlying suppression of cellular PGE₂ biosynthesis by EGCG.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Epigallocatechin-3-gallate (EGCG, Fig. 1) from green tea (Camellia sinensis) has shown chemopreventive and anti-inflammatory activity in animal and epidemiologic human studies [1]. Diverse biochemical mechanisms of EGCG have been described including interference with cyclin-dependent kinases 2 and 4 (IC₅₀ \approx 20 μ M) [2], NF κ B signaling (IC₅₀ = 15 μ M) [3], mitogen-activated protein kinase pathways ($IC_{50} = 10-20 \,\mu\text{M}$) [4], proteasome activity $(IC_{50} = 0.1 - 10 \,\mu\text{M})$ [5], and inhibition of cellular generation of eicosanoids [6,7], particularly of prostaglandin (PG)E₂. PGE₂, a key mediator in inflammation, fever, and pain, is synthesized from arachidonic acid by the concerted action of cyclooxygenases (COX) and PGE₂ synthases (PGES). The molecular targets underlying the suppression of PGE₂ formation by EGCG are incompletely understood. Thus, PGE₂ formation is inhibited in different cellular systems at low micromolar concentrations of EGCG ($IC_{50} = 5-25$ μ M), whereas an interference with cyclooxygenase (COX)-2 mRNA or protein expression is markedly less pronounced ($IC_{50} = 50-250$ μ M) [8–12] and therefore fails to explain the potent effects of EGCG on cellular PGE₂ biosynthesis.

Different terminal isoforms of PGES exist, and co-expression studies have indicated preferential functional couplings between COX and PGES isoenzymes [13]. Thus, the microsomal PGE₂ synthase-1 (mPGES-1) receives its substrate (i.e., PGH₂) from COX-2, and both COX-2 and mPGES-1 are co-expressed in response to pro-inflammatory stimuli (e.g., interleukin (IL)-1ß) resulting in increased PGE₂ formation during inflammation [14]. On the other hand, cPGES and mPGES-2, which are constitutively expressed and essentially coupled to COX-1, are seeming dispensable for massive PGE₂ formation under pro-inflammatory conditions [15–17]. Here we performed a detailed investigation of the effects of EGCG on enzymes involved in PGE2 biosynthesis. Our data exclude cPLA₂ and COX enzymes as primary targets of EGCG but instead led to the identification of EGCG as potent inhibitor of mPGES-1. Because PGE₂ plays a critical role in inflammation and also in inflammation-triggered cancer [18,19], we suggest that suppression of PGE₂ generation through interference with mPGES-1 may contribute to the anti-carcinogenic effects of EGCG.

Materials and methods

Reagents. (–)-EGCG and (–)-EGC, isolated from green tea (*Camellia sinensis*), were from Enzo Life Sciences AG (Lörrach, Germany) and LKT Laboratories (St. Paul, MN, USA), respectively. Both were dissolved in dimethyl sulphoxide (DMSO) and kept in the dark at

^{*} Corresponding author. Fax: +49 7071 29 4565. E-mail address: oliver.werz@uni-tuebingen.de (O. Werz).

⁰⁰⁰⁶⁻²⁹¹X/\$ - see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2009.08.005

Fig. 1. Chemical structure of EGCG and EGC.

-20 °C, and freezing/thawing cycles were kept to a minimum. The thromboxane synthase inhibitor CV4151 and the mPGES-1 inhibitor 2-(2-chlorophenyl)-1*H*-phenanthro[9,10-d]-imidazole (MD-52) were generous gifts by Dr. S. Laufer (University Tuebingen, Germany) and Dr. M. Schubert-Zsilavecz (University Frankfurt, Germany), respectively. Materials used: DMEM/high glucose (4.5 g/l) medium, penicillin, streptomycin, trypsin/EDTA solution, PAA (Coelbe, Germany); PGH₂, Larodan (Malmö, Sweden); 11β-PGE₂, PGB₁, MK-886, human recombinant COX-2, ovine COX-1, Cayman Chemical (Ann Arbor, MI). All other chemicals were obtained from Sigma–Aldrich (Deisenhofen, Germany) unless stated otherwise.

Cells. A549 cells were cultured in DMEM/high glucose (4.5 g/l) medium supplemented with heat-inactivated fetal calf serum (10%, v/v), penicillin (100 U/ml), and streptomycin (100 μ g/ml) at 37 °C in a 5% CO₂ incubator.

Determination of cell-free activity of human recombinant cPLA₂. The cPLA₂ coding sequence was cloned from pVL1393 plasmid (kindly provided by Dr. Wonhwa Cho, University of Illinois at Chicago) into pFastBac[™] HT A containing a 6× his-tag coding sequence. The recombinant plasmid was transformed into DH10Bac™ Escherichia coli. Sf9 cells were transfected with recombinant bacmid DNA using Cellfectin[®] Reagent and the generated baculovirus was amplified. Overexpression of his-tagged cPLA₂ in baculovirusinfected Sf9 cells and isolation using Ni-NTA agarose beads was performed as described [20]. Multilamelar vesicles (MLVs) were prepared by drying 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (PAPC) and 1-palmitoyl-2-oleoyl-sn-glycerol (POG) in a ratio of 2:1 (n/n, in chloroform) under nitrogen. MLVs were downsized to large unilamelar vesicles (LUVs) by extrusion (100 nm pore diameter). Final total concentration of lipids was 250 μ M in 200 μ l. Test compounds and 1 mM Ca²⁺ was added to the vesicles and the reaction was started by addition of 500 ng his-tagged cPLA₂ (in 10 µl buffer). After 1 h at 37 °C, 1.6 ml MeOH was added, and arachidonic acid was extracted by RP-18 solid phase extraction. Following derivatization with p-anisidium chloride, the resulting derivate was analyzed by RP-HPLC at 249 nm as described [21].

Activity assays of isolated COX-1 and -2. Inhibition of the activities of isolated ovine COX-1 and human recombinant COX-2 was performed as described [22]. Briefly, purified COX-1 (ovine, 50 U) or COX-2 (human recombinant, 20 U) were diluted in 1 ml reaction mixture containing 100 mM Tris buffer, pH 8, 5 mM glutathione, 5 μ M hemoglobin, and 100 μ M EDTA at 4 °C and pre-incubated with the test compounds for 5 min. Samples were pre-warmed for 60 s at 37 °C, and arachidonic acid (5 μ M for COX-1, 2 μ M for COX-2) was added. After 5 min at 37 °C, the COX-derived 12-HHT was extracted and then analyzed by HPLC.

Preparation of crude mPGES-1 in microsomes of A549 cells and determination of PGE₂ synthase activity. Preparation of A549 cells and determination of mPGES-1 activity was performed as

described [22]. In brief, cells were incubated with interleukin-1 β (1 ng/ml) for 48 h, cells were harvested, frozen in liquid nitrogen, and ice-cold homogenization buffer (0.1 M potassium phosphate buffer pH 7.4, 1 mM phenylmethanesulphonyl fluoride, 60 µg/ml soybean trypsin inhibitor, 1 µg/ml leupeptin, 2.5 mM glutathione, and 250 mM sucrose) was added. Cells were sonicated on ice (3 × 20 s), and the homogenate was subjected to differential

Fig. 2. Effects of EGCG on key enzymes involved in prostanoid formation in cell-free assays. (A) Purified cPLA₂ (500 ng) was added to liposomes, which were pre-treated with EGCG or vehicle (DMSO). After another 60 min at 37 °C, released arachidonic acid was analyzed by RP-HPLC as described. (B) Purified ovine COX-1 (50 U) or human recombinant COX-2 (20 U) were added to a COX reaction mix, and after pre-incubation with EGCG or vehicle (DMSO) for 5 min, the reaction was started with 5 μ M (COX-1) or 2 μ M (COX-2) arachidonic acid. After 5 min at 37 °C, the formation of 12-HHT was determined by RP-HPLC as described. (C) Microsomal preparations of interleukin-1β-stimulated A549 cells were pre-incubated with vehicle (DMSO) or test compounds for 15 min at 4 °C, and the reaction was started by addition of 20 μ M PGH₂. After 1 min at 4 °C, the reaction was terminated, and formed PGE₂ was assessed as described. Data are given as means + SE, n = 3-4, **p < 0.01, or ***p < 0.001 vs. vehicle (0.1% DMSO) control, ANOVA + Tukey HSD post hoc tests.

Download English Version:

https://daneshyari.com/en/article/1933049

Download Persian Version:

https://daneshyari.com/article/1933049

Daneshyari.com