Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis

Mikihito Kajiya^a, Kimihiro Sato^b, Marcelo J.B. Silva^a, Kazuhisa Ouhara^a, Phi M. Do^c, K.T. Shanmugam^c, Toshihisa Kawai^{a,*}

^a Department of Immunology, The Forsyth Institute, Boston, MA, USA

^b Skyview Enterprises, New York, NY, USA

^c Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA

ARTICLE INFO

Article history: Received 5 June 2009 Available online 10 June 2009

Keywords: Hepatitis Concanavalin A Molecular hydrogen Inflammation Mouse model Lymphocytes Bacteria Antibiotics TNF-α IFN-γ

ABSTRACT

It is well known that some intestinal bacteria, such as *Escherichia coli*, can produce a remarkable amount of molecular hydrogen (H₂). Although the antioxidant effects of H₂ are well documented, the present study examined whether H₂ released from intestinally colonized bacteria could affect Concanavalin A (ConA)-induced mouse hepatitis. Systemic antibiotics significantly decreased the level of H₂ in both liver and intestines along with suppression of intestinal bacteria. As determined by the levels of AST, ALT, TNF- α and IFN- γ in serum, suppression of intestinal bacterial flora by antibiotics increased the severity of ConA-induced hepatitis, while reconstitution of intestinal flora with H₂-producing *E. coli*, but not H₂-deficient mutant *E. coli*, down-regulated the ConA-induced liver inflammation. Furthermore, *in vitro* production of both TNF- α and IFN- γ by ConA-stimulated spleen lymphocytes was significantly inhibited by the introduction of H₂. These results indicate that H₂ released from intestinal bacteria can suppress inflammation induced in liver by ConA.

© 2009 Elsevier Inc. All rights reserved.

Introduction

The antioxidant effects of water dissolved with molecular hydrogen (H_2) was demonstrated in the mouse model of brain injury induced by ischemia reperfusion [1]. Following this study, several other reports also demonstrated that H_2 could suppress tissue injury in organs, such as liver, intestine and heart [2–4], caused by oxidative stress following ischemia reperfusion. Since a close link between inflammation and oxidative stress is well recognized, as each one activates the other, an efficient antioxidant agent should also suppress the inflammation induced in tissue-destructive diseases. However, few reports documenting the anti-inflammatory aspects of H_2 can be found.

Importantly, in past studies using animal models, H_2 has been exogenously applied in the form of gas or dissolved in water supplied to the animals [1–4]. However, it is also true that some intestinal bacteria, such as *Escherichia coli* (*E. coli*), can produce H_2 as a result of their possession of hydrogenases [5]. If, indeed, H_2 is released by intestinal bacteria [6], such internally produced H_2 should affect the host's resistance to oxidative as well as inflammatory stresses. Again, however, no studies have thus far addressed the effects of H_2 , as produced by intestinal bacteria, on the host's resistance to inflammatory stimuli.

Concanavalin A (ConA) is a hemagglutinin that agglutinates blood erythrocytes and a mitogen which predominantly stimulates T cells. Therefore, it causes acute inflammation by the infiltration of activated lymphocytes, which results in massive necrotic tissue injury of hepatocytes accompanied by intrasinusoidal hemostasis [7,8]. Accordingly, ConA-induced hepatitis has been used as an experimental murine model that mirrors most of the pathogenic properties of human autoimmune hepatitis [9]. The resistance to ConA-induced hepatitis by athymic nude mice and SCID mice clearly demonstrates the permissive role T cells play in the induction of hepatic injury induced by ConA [10,11]. Although the tissue injury caused by ConA is limited to the liver [11], the underlying mechanism that explains such organ specificity is still unclear. Nevertheless, ConA-mediated T cell activation also increases the blood level of proinflammatory cytokines, including tumor necrosis factor alpha (TNF- α) and interferon gamma (IFN- γ), which are released from activated T cells and considered to play critical roles

^{*} Corresponding author. Address: Department of Immunology, The Forsyth Institute, 140 The Fenway, Boston, MA, USA. Fax: +1 617 892 8437.

E-mail address: tkawai@forsyth.org (T. Kawai).

⁰⁰⁰⁶⁻²⁹¹X/\$ - see front matter \circledcirc 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2009.06.024

in the development of ConA-induced hepatic inflammation [12–14].

Using a mouse model of acute hepatitis induced by Concanavalin A, the present study examined (1) the amount of H_2 released from bacteria colonized in the intestines and (2) the effects of H_2 released from intestinal bacteria on the inflammation induced in liver.

Materials and methods

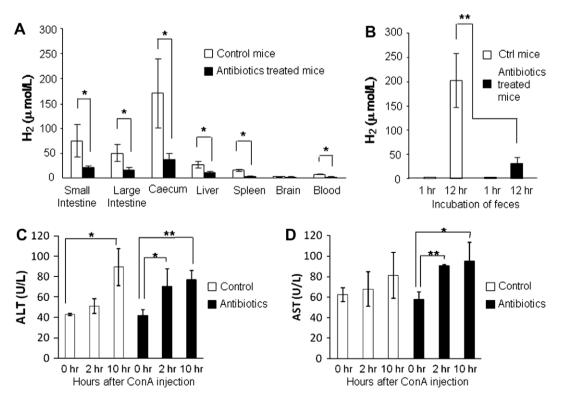
Animals

C57BL/6j mice (8- to 10-week-old males) were kept in a conventional room with a 12-h light-dark cycle at constant temperature. The experimental procedures employed in this study were approved by the Forsyth IACUC.

Establishment of GFP-expressing E. coli

Escherichia coli strain W3110 (ATCC 27325) and its *hypF* deletion mutant strain PMD23, which does not produce H₂, were used in this study (Supplementary Material 1; accessible online). HypF is indispensable for the synthesis of active hydrogenase because its absence results in >95% decrease in hydrogenase activity [15,16]. Using electroporation, both strains of *E. coli* were transfected with pGFPuv-vector (Clontech, Mountain View, CA) possessing an Ampicillin-resistant gene (Amp^r) in the promoter. The resulting two strains, *E. coli* W3110^{gfp+} (Amp^r+/GFP+/HypF+) and *E. coli* PMD23^{gfp+} (Amp^r+/GFP+/HypF–) were cultured in Luria–Bertani (LB) broth containing Ampicillin (100 µg/ml).

Measurement of molecular hydrogen


The molecular hydrogen (H₂) produced in organs of mice was measured using a needle-type Hydrogen Sensor (Unisense A/S, Aarhus, Denmark) following the method published by Hayashida et al. [3]. Immediately after mice were sacrificed under CO₂ inhalation, the needle-type Hydrogen Sensor was placed to the pilot paths prepared in organs by a 25-G needle. Otherwise, the Hydrogen Sensor was directly placed into blood sampled by cardiac puncture. The standard positive concentration of H₂ was prepared by saturation of H₂ gas in water (781 μ M at 25 °C or 721 μ M at 37 °C) at an atmospheric pressure, while non-treated control water was used for H₂ amount 0 μ M. The diffusion factor of H₂ was always taken into account and adjusted (e.g., 0.7 μ M/min from sampled blood in a plastic tube).

Generation of H₂ dissolved water

High purity H_2 gas (Airgas, Salem, NH) was ejected into water or culture medium until H_2 concentration reached to saturation (780 μ M, at 25 °C). Then, H_2 at appropriate concentration was prepared by dilution. The saturated H_2 in water showed pH 7.6 and very high redox potential (ORP level -511 mV).

Concanavalin A-induced acute hepatitis model

Experimental Protocol-A. (1) Animals were supplied with water containing an antibiotics cocktail (Sulfamethoxazole, 8 mg/ml, and Trimethoprim, 1.6 mg/ml) or control antibiotics-free water ad libitum for 3 days. (2) For two additional days, both groups of animals were rested with antibiotics-free water ad libitum. (3)

Fig. 1. Effects of systemic antibiotics treatment on the H_2 level in intestinal ducts and liver and the susceptibility of mice to ConA-induced hepatitis. (A) H_2 concentrations in different organs shown in the histogram were measured using a needle-type Hydrogen Sensor (n = 3/group). (B) Fresh fecal samples collected from the mice treated with or without antibiotics for 3 days followed by a 2-day resting period (feces, 20 mg/10 ml of LB broth, n = 3/group) were incubated for 1 h or 12 h at 37 °C, followed by measurement of H_2 in the bacterial culture. (C and D) ConA (15 mg/kg) was injected i.v. to the mice which were pretreated with or without antibiotics (Sulfamethoxazole, 8 mg/ml, and Trimethoprim, 1.6 mg/ml) for 3 days followed by a 2-day resting period with antibiotics-free water. The levels of ALT (C) and AST (D) in blood serum were measured. Data are shown as the mean ± SD of five mice per group. *p < 0.05, *p < 0.01: values differ significantly (*t*-test).

Download English Version:

https://daneshyari.com/en/article/1933338

Download Persian Version:

https://daneshyari.com/article/1933338

Daneshyari.com