Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

H₂O₂ and 'NO scavenging by *Mycobacterium leprae* truncated hemoglobin O

Paolo Ascenzi^{a,b,*}, Elisabetta De Marinis^a, Massimo Coletta^c, Paolo Visca^{a,b}

^a Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy ^b National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma, Italy ^c Department of Experimental Medicine and Biochemical Sciences, University of Roma 'Tor Vergata', Via Montpellier 1, I-00133 Roma, Italy

ARTICLE INFO

Article history Received 28 May 2008 Available online 9 June 2008

Keywords: Mycobacterium leprae truncated hemoglobin O H₂O₂ and 'NO scavenging Nitrosative and oxidative stress Kinetics

ABSTRACT

Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbO-Fe(III)) oxidation by H₂O₂ and of trHbO—Fe(IV)=O reduction by NO and NO_2^- are reported. The value of the second-order rate constant for H_2O_2 -mediated oxidation of trHbO—Fe(III) is 2.4×10^3 M⁻¹ s⁻¹. The value of the second-order rate constant for 'NO-mediated reduction of trHbO–Fe(IV)=O is 7.8×10^6 M⁻¹ s⁻¹. The value of the first-order rate constant for trHbO–Fe(III)–ONO decay to the resting form trHbO–Fe(III) is 2.1×10^{1} s⁻¹. The value of the second-order rate constant for NO₂⁻-mediated reduction of trHbO–Fe(IV)=O is 3.1×10^3 M⁻¹ s⁻¹. As a whole, trHbO–Fe(IV)=0, generated upon reaction with H_2O_2 , catalyzes 'NO reduction to NO_2^- . In turn, NO and NO_2^- act as antioxidants of trHbO—Fe(IV)=O, which could be responsible for the oxidative damage of the mycobacterium. Therefore, *Mycobacterium leprae* trHbO could be involved in both H_2O_2 and 'NO scavenging, protecting from nitrosative and oxidative stress, and sustaining mycobacterial respiration.

© 2008 Elsevier Inc. All rights reserved.

During infection, Mycobacterium leprae is faced with the host macrophagic environment, where low pH, low pO₂, high CO₂ levels, combined with the toxic activity of reactive nitrogen and oxygen species, including nitrogen monoxide (\cdot NO), superoxide ($O_2 \cdot -$), and hydrogen peroxide (H_2O_2) , contribute to limit the growth of the bacilli. Remarkably, reactive nitrogen and oxygen species produced in vivo during the respiratory burst by monocytic/macrophagic cells are an important cause of host tissue toxicity (i.e., nerve damage) [1–12].

The ability of *M. leprae* to persist in vivo in the presence of reactive nitrogen and oxygen species implies the presence in this elusive mycobacterium of (pseudo-)enzymatic detoxification systems, including truncated hemoglobin O (trHbO) [8-10,13-18]. M. leprae trHbO has been reported to facilitate 'NO and peroxynitrite scavenging using O_2 and 'NO as cofactors [10,16–19]. As reported for some heme-proteins (e.g., hemoglobin (Hb) and myoglobin (Mb)) [20–28], M. leprae trHbO may undergo oxidation by H₂O₂, leading to the formation of the highly oxidizing ferryl derivative (trHbO-Fe(IV)=O), which could be responsible for the oxidative damage of the mycobacterium. Remarkably, recent studies [29–36] suggest that 'NO and nitrite (NO₂⁻) can serve as antioxidants of the highly oxidizing heme-Fe(IV)=O derivative of heme-proteins.

Here, we report kinetics of *M. leprae* trHbO—Fe(III) oxidation by H₂O₂ and of 'NO- and NO₂⁻-mediated reduction of *M. leprae* trHbO—Fe(IV)=O. As a whole, M. leprae trHbO—Fe(IV)=O, obtained by treatment with H₂O₂, catalyzes 'NO detoxification. In turn, 'NO and NO₂⁻ act as antioxidants of *M. leprae* trHbO—Fe(IV)=O. Therefore, *M. leprae* trHbO can undertake within the same cycle not only NO and peroxynitrite scavenging [9,10,16-19] but also H₂O₂ detoxification (present study).

Materials and methods

Mycobacterium leprae trHbO—Fe(III) was prepared as previously reported [37]. The M. leprae trHbO-Fe(III) concentration was determined by measuring the optical absorbance at 409 nm $(\varepsilon_{409nm} = 1.15 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1})$ [16]. *M. leprae* trHbO—Fe(IV)=O was prepared by adding 10-25 equivalents of H₂O₂ to a buffered M. leprae trHbO-Fe(III) solution. After a reaction time of 10-20 min, the trHbO-Fe(IV)=O solution was stored on ice and used within 1 h [33–35]. The H₂O₂, 'NO, and NO₂⁻ solutions were prepared as previously reported [10,16,34].

Kinetics of H₂O₂-mediated oxidation of trHbO-Fe(III) was determined by mixing the trHbO-Fe(III) (final concentration, 2.3×10^{-6} M) solution with the H₂O₂ (final concentration, 1.0×10^{-5} to 5.0×10^{-5} M) solution [23–25].

The time course of H_2O_2 -mediated oxidation of trHbO—Fe(III) was fitted to a single-exponential process (Scheme 1) [23-25].

Abbreviations: Fe(III), ferric heme-protein; Fe(IV)=O, ferryl heme-protein; Fe(III)-ONO, O-nitrito ferric heme-protein; Hb, hemoglobin; Lb, leghemoglobin; Mb, myoglobin; TrHbO, truncated Hb O.

Corresponding author. Fax: +39 06 5733 6321.

E-mail address: ascenzi@uniroma3.it (P. Ascenzi).

⁰⁰⁰⁶⁻²⁹¹X/\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2008.05.168

Values of *k* were determined according to Eq. (1) [23–25]:

$$[trHbO-Fe(III)]_{t} = [trHbO-Fe(III)]_{i} \times e^{-k \times t}$$
(1)

The value of k_{on} was determined according to Eq. (2) [23–25]: $k = k_{\text{on}} \times [\text{H}_2\text{O}_2]$ (2)

Kinetics for 'NO-mediated reduction of trHbO-Fe(IV)=O was determined by mixing the trHbO-Fe(IV)=O (final concentration, 1.2×10^{-6} M) solution with the 'NO (final concentration, 5.0×10^{-6} to 2.0×10^{-5} M) solution [29–35].

The time course of 'NO-mediated reduction of trHbO—Fe(IV)=O was fitted to a two-exponential process (Scheme 2) [29-35].

Values of h and l were determined according to Eqs. (3)-(5) [29– 35,38]:

$$[trHbO-Fe(IV)=0]_{t} = [trHbO-Fe(IV)=0]_{i} \times e^{-h \times t}$$
(3)
[trHbO-Fe(III)-ONO]_{t} = [trHbO-Fe(IV)=0]_{i}

$$\times (h \times ((e^{-h \times t}/(l-h)) + (e^{-l \times t}/(h-l))))$$

$$[trHbO-Fe(III)]_{t} = [trHbO-Fe(IV)=O]_{t}$$
(4)

$$-([trHbO-Fe(III)]_{t} = [tIHbO-Fe(IV)-O]_{i}$$

-([trHbO-Fe(IV)=O]_{t} + [trHbO-Fe(III)-ONO]_{t}) (5)

The value of h_{on} was determined according to Eq. (6) [29–35]:

$$h = h_{\rm on} \times [{}^{\cdot}{\rm NO}] \tag{6}$$

Kinetics for NO₂⁻-mediated reduction of trHbO—Fe(IV)=O was determined by mixing the trHbO-Fe(IV)=O (final concentration, 2.9×10^{-6} M) solution with the NO_2^- (final concentration, 2.5×10^{-5} to 2.0×10^{-4} M) solution [33–35].

The time course of NO_2^- -mediated reduction of trHbO-Fe(IV)=O was fitted to a single exponential process (Scheme 3) [33-35].

Values of *b* were determined according to Eq. (7) [33–35]:

$$[trHbO-Fe(IV)=O]_{t} = [trHbO-Fe(IV)=O]_{i} \times e^{-b \times t}$$
(7)

The value of b_{on} was determined according to Eq. (8) [33–35]:

$$b = b_{\rm on} \times [\rm NO_2^-] \tag{8}$$

All the experiments were obtained at pH 7.2 (5.0×10^{-2} M phosphate buffer) and 20.0 °C.

Results

Mixing of the *M. leprae* trHbO–Fe(III) and H₂O₂ solutions is accompanied by a shift of the optical absorption maximum of the Soret band from 409 nm (i.e., trHbO-Fe(III)) [19] to 419 nm (i.e., trHbO-Fe(IV)=O) and a change of the extinction coefficient from $\varepsilon_{409nm} = 1.15 \times 10^5 \,\text{M}^{-1} \,\text{cm}^{-1}$ (i.e., trHbO—Fe(III)) [19] to $\varepsilon_{419nm} = 1.06 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$ (i.e., trHbO—Fe(IV)=O).

Over the whole H₂O₂ concentration range explored, the time course for H₂O₂-mediated oxidation of *M. leprae* trHbO-Fe(III) cor-

trHbO-Fe(III) + H₂O₂
$$\rightarrow$$
 trHbO-Fe(IV)=O

Scheme 1.

$$h_{on}$$
 l
trHbO-Fe(IV)=O + $NO \rightarrow trHbO$ -Fe(III)-ONO $\rightarrow trHbO$ -Fe(III) + NO₂

Scheme 2

trHbO-Fe(IV)=O + NO₂^{$$D_{on}$$} trHbO-Fe(III)

Scheme 3.

Table 1

Values of kinetic parameters for H2O2-mediated oxidation of heme-Fe(III)

Heme-protein	$k_{\rm on} ({ m M}^{-1}{ m s}^{-1})$
Mycobacterium leprae trHbO ^a	$\textbf{2.4}\times\textbf{10}^{3}$
Horse heart Mb ^b	$5.4 imes 10^2$
Sperm-whale Mb ^c	$6.6 imes 10^2$
Human Mb ^d	$3.4 imes 10^4$
Horseradish peroxidase ^e	$1.7 imes 10^7$
Human myeloperoxidase ^f	$1.9 imes 10^7$
Human eosinophil peroxidase ^g	$4.3 imes 10^7$
Bovine lactoperoxidase ^h	$1.1 imes 10^7$
Catalase ⁱ	$1.7 imes10^7$

^a pH 7.2 and 20.0 °C. Present study.

	pH 6.0 and 25.0 °C. From [24].	
с	pH 7.0 and 37.0 °C. From [25].	
d	pH 7.3 and 37.0 °C. From [23].	
e	pH 7.0 and 25.0 °C. From [21].	
f	pH 7.0 and 15.0 °C. From [27].	
g	pH 7.0 and 15.0 °C. From [26].	
h	pH 7.0 and 15.0 °C. From [28].	
i	pH 7.0 and 20.0 °C. From [20].	

responds to a monophasic process between 360 and 460 nm (Scheme 1). Values of k are wavelength-independent at fixed $[H_2O_2]$. The plot of k versus $[H_2O_2]$ is linear; the slope corresponds to $k_{on} = 2.4 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ (Table 1).

Mixing of the M. leprae trHbO-Fe(IV)=O and NO solutions brings about a shift of the optical absorption maximum of the Soret band from 419 nm (i.e., trHbO–Fe(IV)=O) to 411 nm (i.e., trHbO-Fe(III)-ONO) and a change of the extinction coefficient from $\epsilon_{419nm} = 1.06 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$ (i.e., trHbO—Fe(IV)=O) to $\epsilon_{411nm} = 1.41 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$ (i.e., trHbO—Fe(III)—ONO). Then, the M. leprae trHbO—Fe(III)—ONO solution undergoes a shift of the optical absorption maximum of the Soret band from 411 nm (i.e., trHlbO-Fe(III)-ONO) to 409 nm (i.e., trHbO-Fe(III)) [19] and a change of the extinction coefficient from ϵ_{411nm} = 1.41 \times $10^5 \, \text{M}^{-1} \, \text{cm}^{-1}$ (i.e., trHbO(III)—ONO) to $\varepsilon_{409nm} = 1.15 \times$ 10⁵ M⁻¹ cm⁻¹ (i.e., trHbO–Fe(III)) [19].

Over the whole 'NO concentration range explored, the time course for 'NO-mediated reduction of M. leprae trHbO-Fe(IV)=0 corresponds to a biphasic process between 360 and 460 nm. The first step (indicated by h_{on} in Scheme 2) is a bimolecular process, while the second step (indicated by *l* in Scheme 2) is a monomolecular process.

Values of *h* are wavelength-independent at fixed ['NO]. The plot of *h* versus [NO] is linear; the slope corresponds to $h_{on} = 7.8$ $\times 10^6 \,\mathrm{M^{-1} \, s^{-1}}$ (Table 2). In contrast, values of *l* are wavelengthand [NO]-independent; the average value of *l* is $(2.1 \pm 0.2) \times 10^{1} \text{ s}^{-1}$ (Table 2).

Table 2

Values of kinetic parameters for 'NO-mediated reduction of heme-Fe(IV)=O

Heme-protein	$h_{\rm on}~({ m M}^{-1}~{ m s}^{-1})$	$l(s^{-1})$
Mycobacterium leprae trHbO ^a	$\textbf{7.8}\times 10^6$	2.1×10^1
Glycine max Lb ^b	$1.8 imes 10^6$	> 5.0 × 10 ¹
Horse heart Mb ^c	$1.7 imes 10^7$	6.0
Human Hb ^d	$2.4 imes 10^7$	$4.8 imes 10^{-1}$
		$1.2 imes 10^{-1}$
Horseradish peroxidase ^e	$1.0 imes 10^6$	Fast
Human myeloperoxidase ^f	$8.0 imes 10^3$	Fast
Porcine eosinophyl peroxidase ^g	$1.7 imes 10^4$	Fast
Bovine lactoperoxidase ^g	$\textbf{8.7}\times10^4$	Fast

pH 7.2 and 20.0 °C. Present study.

^b pH 7.0 and 20.0 °C. From [35].

^c pH 7.0 and 20.0 °C. From [33].

d

pH 7.0 and 20.0 °C. Biphasic kinetics of heme-Fe(III)-ONO decay has been attributed to α - and β -chains. From [34].

pH 7.4 and 20.0 °C. From [29].

pH 7.0 and 25.0 °C. From [30].

^g pH 7.0 and 25.0 °C. From [32].

Download English Version:

https://daneshyari.com/en/article/1935089

Download Persian Version:

https://daneshyari.com/article/1935089

Daneshyari.com