Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Urokinase directly activates matrix metalloproteinases-9: A potential role in glioblastoma invasion

Yunge Zhao^{a,*}, Charles E. Lyons Jr.^{a,b}, Aizhen Xiao^a, Dennis J. Templeton^{a,b}, Qingxiang Amy Sang^c, Keith Brew^d, Isa M. Hussaini^a

^a Department of Pathology, University of Virginia, 415 Lane Road, MR5 Rm3332, Charlottesville, VA 22908, USA

^b Collaborative Mass Spectrometry Facility, University of Virginia, Charlottesville, VA 22908, USA

^c Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA

^d Department of Basic Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA

ARTICLE INFO

Article history: Received 3 March 2008 Available online 18 March 2008

Keywords: MMP-9 uPA Activation Cell invasion Glioblastoma Mass spectrum

ABSTRACT

Previous reports showed that urokinase plasminogen activator (uPA) converts plasminogen to plasmin which then activates matrix metalloproteinases (MMPs). Here, we report that uPA directly cleaved pro-MMP-9 in a time-dependent manner at both C- and N-terminus and generated two gelatinolytic bands. uPA-activated-MMP-9 efficiently degraded fibronectin and blocked by uPA inhibitor B428 and recombinant tissue inhibitor of metalloproteinase-1 (TIMP-1). B428 inhibited basal and PMA-induced active MMP-9 in glioblastomas (GBM) U1242 cell media as well as cell invasion *in vitro*. A combination of MMP-9 and uPA antibodies more significantly inhibited U1242 cell invasion *in vitro*. A combination of MMP-9 and uPA antibodies more significantly inhibited U1242 cell and GBM patient specimens. Furthermore, two active MMP-9 fragments with identical molecular weights to the uPA-activated MMP-9 products were detected in GBM patient specimens. These results suggest that uPA-mediated direct activation of MMP-9 may promote GBM cell invasion.

© 2008 Elsevier Inc. All rights reserved.

Extracellular proteolysis is critical for tumor invasion, metastasis and angiogenesis. The two best-characterized groups of extracellular proteolytic enzymes are urokinase plasminogen activator (uPA) and matrix metalloproteinases (MMPs) [1]. MMPs, a family of zinc-dependent enzymes that proteolytically degrade various components of the ECM, play a critical role in a variety of malignant tumor invasive processes [2]. The expression and activation of gelatinase B (MMP-9) are involved in tumor progression [2]. Similarly, increased expression of uPA and MMP-9 has been found in human malignant brain tumors *in vivo* [3,4] and these proteases play an important role in human glioblastomas (GBM) invasion and tumorigenesis [5,6]. MMP-9 is secreted as an inactive precursor and requires activation by other proteases or autocatalysis [7] which is critical for its activity and biological function.

Previous study reported that uPA interacts with MMP-9 indirectly through uPA/plasminogen/plasmin system, in which uPA activates plasminogen to plasmin. The latter subsequently acts as a potential activator of pro-MMP-9 in various human cancer cell lines [6,8–10]. Other reports demonstrated that plasmin is not a direct [10] or an efficient [11] activator of pro-MMP-9. These findings led us to investigate whether uPA can directly activate MMP-9. In this study, we provide evidence that uPA directly activates pro-MMP-9 at both N-terminus and C-terminus *in vitro*. Neutralization of uPA and MMP-9 activities with specific antibodies attenuated GBM U1242 cell invasion. Our results suggest that uPA-evoked MMP-9 activation and increased invasion may be partly mediated through the plasminogen/plasmin-independent pathway.

Materials and methods

Biochemical cleavage assay of MMP-9 by uPA. Purified recombinant uPA (0.02 µM, a gift from Drs. Jack Henkin and Andrew Mazar of Abbott Laboratories, Abbott Park, IL) was incubated with purified pro-MMP-9 (pMMP-9, $0.2 \mu M$), purified MMP-9/ TIMP-1 (0.2 µM), and purified MMP-9-lipocalin complex (0.2 µM), MMP-9 monomer (mMMP-9, 0.2 μ M) in the presence or absence of purified recombinant N-terminal domain of TIMP-1 (N-TIMP-1, 0.2 µM) [12] in glycine buffer (0.1 M glycine, pH 8.0) at 37 °C for 24 h. To compare this novel activation with other known MMP-9 activators mediated activation, recombinant MMP-3 catalytic domain (0.02 μM), and MMP-26 (0.02 μM), and uPA-activated plasmin (0.02 μM) were incubated with latent MMP-9 (0.2 µM) in the incubation buffer [15] at 37 °C for 24 h. The purified MMPs (except MMP-26 [13]) were purchased from Calbiochem, San Diego, CA. The selective uPA inhibitor 4-iodobenzo[b]thiophene-2-carboxamidine (B428, 7.5 $\mu M)$ was added to inhibit the cleavage. To verify whether latent forms of MMP-9, MMP-9/TIMP-1 complex and MMP-9/NGAL complex can be activated, 4-aminophenylmercuric acetate (APMA, 1 mM), a well-known pro-MMP activator in vitro, was added and incubated for 4 h. For the time-dependent assay of MMP-9 cleavage by uPA, MMP-9 (0.2 $\mu M)$ was incubated with uPA (0.02 $\mu M)$ for the indicated time periods.

^{*} Corresponding author. Fax: +1 434 924 2151.

E-mail address: yz5u@virginia.edu (Y. Zhao).

⁰⁰⁰⁶⁻²⁹¹X/\$ - see front matter \odot 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2008.03.038

Substrate cleavage assay, TIMP-1 inhibition and silver staining. To further determine the uPA cleavage of MMP-9 is activation, substrate cleavage assays were performed. Fibronectin is one of the major ECM components, which are elevated in the brain of the human glioblastoma patients [14]. For fibronectin cleavage assays, pro-MMP-9 was pre-incubated with uPA, MMP-26, MMP-3, plasmin and APMA and for 24 h to generate active MMP-9 solution. Fibronectin (1 mg/ml, Sigma) was incubated with 2 µl of the active MMP-9 solution in incubation buffer [13] at 37 °C for another 24 h. Fibronectin incubated with uPA (0.02 µM), pro-MMP-9 (0.2 µM), MMP-26 (0.02 µM), or MMP-3 (0.02 µM) alone under the same experimental condition were served as control. To test the effects of TIMP-1 on activity of uPA-activated MMP-9, N-TIMP-1 (0.03 µM) was pre-incubated MMP-9 monomer (0.02 µM) at 37 °C for 6 h, followed by adding uPA (0.002 µM) to the pre-incubated solution and incubated at 37 °C for another 24 h. The silver staining was performed according to our previous report [13].

Edman protein N-terminal sequencing and phenyl isocyanate (PIC) N-terminal labeling and mass spectrum (MS) analysis. Edman N-terminal sequencing was performed as previously reported [13] at the Biomolecular Research Facility, University of Virginia. The reaction solution of uPA and MMP-9, and MMP-9 alone incubated with 2.5 mM PIC (Sigma) in 10 mM Hepes (pH 7.5) for 10 min at room temperature, the reaction was stopped by addition of 1 µl of 100 mM ammonium bicarbonate buffer. Under these conditions PIC has been shown to label only the N-terminal amines [15]. The mixture was loaded onto 9% SDS-PAGE for separation and the protein bands were revealed with silver staining [13]. The interested band was excised from the gel. The detailed method of MS was provided in Supplementary Method 1.

Gelatin and fibrinogen zymography. MMP-9 activity was detected by gelatin zymography as described previously [13]. uPA activity was detected using fibrinogen zymography. Briefly, cell media or protein extracts were resolved under non-reducing conditions on 10% SDS-PAGE gels containing 1 mg/ml fibrinogen and 20 μ g/ml plasminogen (Sigma). The gels were rinsed, incubated, stained and destained as described previously [13] except the incubation buffer was 0.1 M glycine (pH 8.0).

Cell invasion assay. The cell invasion assay was performed as previously reported [13]. Briefly, cell suspension (1×10^5 cells) was added to each insert, which were pre-coated with 0.25 mg/ml fibronectin in the presence or absence of specific uPA inhibitor, B428 (7.5 μ M), phorbol 12-myristate 13-acetate (PMA, 50 nM), uPA antibody (25 μ g/ml, American Diagnostica Inc.) and MMP-9 antibody (25 μ g/ml, CalBiochem). DMSO or normal IgG was used as controls. The invaded cells were stained and counted as previous report [13].

Results

uPA directly cleaves latent MMP-9

Our biochemical assays revealed that purified 92 kDa pro-MMP-9 was cleaved directly by uPA, generating two new bands (86 and 80 kDa) showed gelatinolytic activity (Fig. 1). A specific uPA inhibitor B428 (7.5 μ M) completely blocked the cleavage of MMP-9 by uPA (Fig. 1). Furthermore, uPA-mediated cleavage of pro-MMP-9 was time-dependent. These results suggest that pro-MMP-9 can be cleaved by uPA directly and generated two new bands with gelatinolytic activity *in vitro*.

To identify the cleavage sites of MMP-9 by uPA, Edman N-terminal sequencing and MS analyses using N-terminal PIC-labeling were performed. N- and C-terminal amino acids of 86 kDa band (band 2B) and 80 kDa (band 2C) were shown in Fig. 1D. MS analyses showed that the N-terminal amino acids of band 2B was very similar to the data generated from Edman N-terminal sequencing, which matched the known sequence of MMP-9. Our results explain why bands 2B and C showed gelatinolytic activity because they still had the zinc-binding motif in the catalytic domain of MMP-9. N-terminal and C-terminal fragments of band 1A indicate that band 1A is a full length MMP-9. These results suggest that latent MMP-9 can be cleaved by uPA at both N-terminus and C-terminus. The N- and C-terminal amino acids of other bands were shown as in Fig. 1D.

Comparison of uPA and other known MMP-9 activators on gelatin and fibronectin cleavage

Since a number of previous studies show that uPA converts inactive plasminogen to active plasmin, the latter further cleaves extracellular matrix components and activates some MMPs [6,8–10], we compared the cleavage of uPA-activated MMP-9 and uPA-plasmin-activated MMP-9. The results revealed that uPAplasmin-activated MMP-9 fragment was 84 kDa, indicating the cleavage site is different from uPA-activated MMP-9 (Fig. 2). Next, we designed experiment to identify enzymatic activity of uPA-activated MMP-9 against its substrate and compare with MMP-26-, MMP-3- and APMA-activated MMP-9 substrate cleavage. We chose fibronectin as substrate because it is a common extracellular matrix component and elevated in human brain glioblastoma [14]. Biochemical substrate digestion assay showed that uPA-activated MMP-9 cleaved fibronectin and generated at least nine new products compared with control (Fig. 2). MMP-26-activated MMP-9 generated four fragments, MMP-3-activated MMP-9 generated three fragments and APMA-activated-MMP-9 even did not show any cleavage; while uPA, pro-MMP-9, MMP-26 and MMP-3 alone exhibited no catalytic activity to fibronectin (Fig. 2C). The silver staining of uPA-, MMP-26-, MMP-3- and APMA-activated MMP-9 and uPA, pro-MMP-9, MMP-26 and MMP-3 alone exhibited no additional bands under the same experimental condition (molar concentration ratio enzyme:fibronectin = 1:50) (data not shown). These results indicate that uPA-activated MMP-9 cleaved fibronectin more efficiently than MMP-26-, -3- and APMA-activated MMP-9 or uPA, pro-MMP-9, MMP-26, and -3 alone in in vitro.

uPA-mediated MMP-9 activation is regulated by TIMP-1 and NGAL

Since MMP-9 preferentially forms complexes with its regulators (TIMP-1 and NGAL), we determined the effects of these regulators on uPA-mediated MMP-9 activation, using purified pro-MMP-9/ TIMP-1 and pro-MMP-9/NGAL complexes. Both MMP-9/TIMP-1 and MMP-9/NGAL complexes were not cleaved by uPA compared with control (Fig. 3A), while APMA activated the pro-MMP-9/NGAL complex and reduced the 175 kDa pro-MMP-9/TIMP-1 complex (data not shown). Purified MMP-9 monomer, and the purified recombinant N-TIMP-1 were used to further confirm the regulation of uPA-mediated-pro-MMP-9 cleavage by TIMP-1. The results showed that pre-incubation with both N-TIMP-1 and uPA specific inhibitor B428 for 2 h abolished MMP-9 monomer activation by uPA when compared with control (Fig. 3B). These results suggest that uPA-mediated MMP-9 activation is inhibited by TIMP-1.

uPA-activated MMP-9 promotes U1242 GBM cell invasion

We then explored whether uPA-mediated-MMP-9 activation is involved in GBM cell invasion. First we identified that both uPA and MMP-9 were highly expressed in U1242 GBM cell media (Fig. 4A and B). Treatment of U-1242 GBM cells with uPA specific inhibitor (B428, 7.5 μ M) for 24 h inhibited formation of active MMP-9 in U1242 cell media (Fig. 4A). Following treatment of U1242 cells with PMA (50 nM), a stimulator of uPA and MMPs via activation of protein kinase C pathway, secreted uPA, pro-MMP-9 and active MMP-9 were highly increased compared with DMSO (Fig. 4B and C). B428 blocked PMA-induced pro-MMP-9 and active MMP-9 when compared with control. However, both PMA and B428 had no effect on activity of MMP-2 (Fig. 4C). To further explore the role of uPA-activated MMP-9 in in vitro invasion of U1242 cells, fibronectin invasion assay was used, because uPAactivated MMP-9 degraded fibronectin more efficiently (Fig. 2C). Fibronectin is one of the ECM proteins found in GBM patient specimens [14]. The results showed that B428 significantly inhibited basal invasion (20.1%, p < 0.05) and PMA-stimulated invasion (55.6%, p < 0.001) in U1242 cells as compared with DMSO (Fig. 4D). In addition, a combination of functional neutralizing antibodies of MMP-9 and uPA synergically inhibited U1242 cell invasion by 63.74% (P < 0.001) compared with uPA or MMP-9 antibody alone. Treatment of U-1242 cells with uPA or MMP-9

Download English Version:

https://daneshyari.com/en/article/1935743

Download Persian Version:

https://daneshyari.com/article/1935743

Daneshyari.com