

Available online at www.sciencedirect.com

BBRC

Biochemical and Biophysical Research Communications 366 (2008) 988-993

www.elsevier.com/locate/ybbrc

Allosterically coupled calcium and magnesium binding sites are unmasked by ryanodine receptor chimeras

Andrew A. Voss^{a,1}, Paul D. Allen^b, Isaac N. Pessah^{a,*}, Claudio F. Perez^b

^a Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA ^b Department of Anesthesia Perioperative and Pain Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA

> Received 26 November 2007 Available online 26 December 2007

Abstract

We studied cation regulation of wild-type ryanodine receptor type 1 ($_{WT}RyR1$), type 3 ($_{WT}RyR3$), and RyR3/RyR1 chimeras (Ch) expressed in 1B5 dyspedic myotubes. Using [³H]ryanodine binding to sarcoplasmic reticulum (SR) membranes, Ca²⁺ titrations with $_{WT}RyR3$ and three chimeras show biphasic activation that is allosterically coupled to an attenuated inhibition relative to $_{WT}RyR1$. Chimeras show biphasic Mg²⁺ inhibition profiles at 3 and 10 μ M Ca²⁺, no observable inhibition at 20 μ M Ca²⁺ and monophasic inhibition at 100 μ M Ca²⁺. Ca²⁺ imaging of intact myotubes expressing Ch-4 exhibit caffeine-induced Ca²⁺ transients with inhibition kinetics that are significantly slower than those expressing $_{WT}RyR1$ or $_{WT}RyR3$. Four new aspects of RyR regulation are evident: (1) high affinity (H) activation and low affinity (L) inhibition sites are allosterically coupled, (2) Ca²⁺ facilitates removal of the inherent Mg²⁺ block, (3) $_{WT}RyR3$ exhibits reduced cooperativity between H activation sites when compared to $_{WT}RyR1$, and (4) uncoupling of these sites in Ch-4 results in decreased rates of inactivation of caffeine-induced Ca²⁺ transients.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Ryanodine receptors; Calcium-induced calcium release; Channel regulation; Regulation of calcium signaling; Skeletal muscle

Three isoforms of wild-type ryanodine receptors ($_{WT}RyR1$, 2 and 3) are expressed in specialized regions of endoplasmic/sarcoplasmic reticulum (ER/SR) in most mammalian cells where they function as Ca²⁺ release channels that produce local and global Ca²⁺ signals [1,2]. Fluctuating physiological cation concentrations, especially Ca²⁺ and Mg²⁺, tightly regulate the activity of all three $_{WT}RyR$ isoforms [3–9]. Cytoplasmic Ca²⁺ ranging from nM to μ M enhances the open probability of $_{WT}RyRs$, whereas >100 μ M Ca²⁺ or Mg²⁺ depresses channel activity [5,10] and [11]. The "bell shaped" regulation of $_{WT}RyR$ by Ca²⁺ is thought to be responsible for physiological and pathophysiological Ca²⁺-induced Ca²⁺ release (CICR)

phenomena observed in many cell types, including muscle and neurons [1,2,12,13] and [14].

WTRyR isoforms preferentially bind the plant alkaloid ryanodine with nM affinity when in the open state [3,6] and [7]. Ca^{2+} and Mg^{2+} titrations in [³H]ryanodine binding and Ca²⁺ release experiments have revealed Hill coefficients >1, indicating coordinated regulation of CICR channels by multiple cation binding sites [15]. Mg²⁺ inhibition studied with channels reconstituted in lipid bilayer membranes [16] and Ca²⁺ release from SR membrane vesicles [4] and [11] suggest dual mechanisms of Mg²⁺ inhibition through competition with Ca^{2+} for high affinity (H) activation sites and binding at low affinity (L) cation inhibition sites. At physiological concentrations, free Mg^{2+} (1– 2 mM) is likely to occupy both H and L sites, providing a basal level of _{WT}RyR inhibition that must be overcome for EC-coupling to occur [17,18]. Studies have suggested that the physical coupling between wTRyR and the dihydropyridine receptor (DHPR) may remove the Mg²⁺ block

^{*} Corresponding author. Fax: +1 530 752 4698.

E-mail address: inpessah@ucdavis.edu (I.N. Pessah).

¹ Present address: Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

⁰⁰⁰⁶⁻²⁹¹X/\$ - see front matter @ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2007.12.058

during EC-coupling [18]; whereas, other authors have suggested oxidation of $_{WT}RyR$ sulfhydryl groups may override Mg^{2+} inhibition [19]. Functional overlap of Ca^{2+} and Mg^{2+} interactions at H and L regulation sites have confounded cation regulation studies of $_{WT}RyR1$ and resulted in conclusions partially derived from extrapolation. A system that permits more direct analysis of cytoplasmic Ca^{2+} and Mg^{2+} regulation would greatly facilitate mechanistic interpretations of RyR cation regulation in health and disease.

RyR3/RyR1 chimeras were designed to identify regions of $_{WT}$ RyR1 directly associated with the DHPR during ECcoupling [20,21]. In this report, [³H]ryanodine binding experiments on $_{WT}$ RyR1, $_{WT}$ RyR3, and a subset of these chimeras (Ch-4, $_{WT}$ RyR1, $_{1681-3770}$; Ch-17, 1681–2217; Ch-21, 1924–2446) reveal a biphasic cytoplasmic Ca²⁺ activation profile, suggesting variable cooperativity between H activation sites, revealing coupled but separated interactions at H activation and L inhibition sites. This study provides direct insight into Ca²⁺ and Mg²⁺ regulation, suggests new aspects of $_{WT}$ RyR function, and establishes the chimeras as models for future studies of $_{WT}$ RyRs and cation regulation.

Materials and methods

Chimeric RyR1/RyR3 constructs. Specific primers were designed for PCR amplification of the selected fragments using _{WT}RyR1 as a template. Amplified fragments from _{WT}RyR1 encoding aa 1681–2217 (Ch-17), 1924–2446 (Ch-21) and 1681–3770 (Ch-4) were inserted, in frame, into the endogenous restriction site(s) of HSV-RyR3 plasmid as described previously [20]. All chimeric constructs were cloned into the HSV-1 amplicon vector and packaged using a helper virus-free packaging system [22].

Cell culture, infection, and membrane preparation. 1B5 myoblasts were cultured and differentiated into myotubes as described previously [20] and [23]. Plates with differentiated myotubes were infected with virion containing wild-type and RyR1/RyR3 chimeric cDNA for 2 h and membrane extracts were prepared 36 h after infection. Myotubes were homogenized and membrane fractions obtained by differential centrifugation as described previously [24].

 $[^{3}H]$ Ryanodine binding assay. High affinity binding of $[^{3}H]$ ryanodine ($[^{3}H]$ Ry; 56 Ci/mmol; New England Nuclear, Boston, MA) to membranes (10–50 µg/ml protein) was performed in the presence of 250 mM KCl, 20 mM Hepes, pH 7.4, and 5 nM $[^{3}H]$ Ry [6]. Free Ca²⁺ and Mg²⁺ concentrations buffered with EGTA were determined using the Bound And Determined software [25]. The binding reaction was equilibrated at 37 °C for 3 h. Non-specific binding was assessed in the presence of 5 µM unlabeled ryanodine. Bound ligand was separated from free by filtration through Whatman GF/B glass fiber filters using a Brandel cell harvester (Gaithersburg, MD), washed with ice-cold buffer, placed into 5 ml scintillation cocktail (ScintiVerse; Fisher Scientific), and radioactivity counted.

Equations for binding analysis. Curve fitting was generated by Microcal[™] Origin[®] Version 6.0 using the equations:

Activation:

(a)
$$y = \frac{(B_{\max})(x^n)}{k^n + x^n}$$
 (b) $y = \frac{(B_{\max_1})(x^{n_1})}{k_1^{n_1} + x^{n_1}} + \frac{(B_{\max_2})(x^{n_2})}{k_2^{n_2} + x^{n_2}}$

where, $B_{\text{max}} = \text{maximum bound}$, $k = \text{EC}_{50}$ and n = Hill coefficientInhibition:

(c)
$$y = \frac{A_1 - A_2}{1 + \left(\frac{x}{x_0}\right)^p} + A_2$$
 (d) $y = A_2 + \frac{(A_1 - A_2)f}{1 + 10^{(x - \log x_0)}} + \frac{(A_1 - A_2)(1 - f)}{1 + 10^{(x - \log x_0)}}$

where A1 = top asymptote, A2 = bottom asymptote, xo = IC50, f = fraction, and p = power.

 Ca^{2+} imaging. Calcium imaging was performed during the stable phase of transduced protein expression in the myotubes 36–48 h post-infection as previously described [20]. Ca²⁺ release was induced with 20 s perfusion of 20 mM caffeine. Monophasic exponential decay curves were fitted with GraphPad Prism[®] Version 4.0 according to following function: $y=Span\cdot e^{(-k\cdot X)} + Plateau$ were k = rate constant.

Results and discussion

To examine cation regulation, both $_{WT}RyRs$ and RyR3/RyR1 chimeras were expressed in dyspedic 1B5 myotubes, a myogenic cell line devoid of all $_{WT}RyR$ isoforms, but containing the accessory proteins necessary for normal $_{WT}RyR$ function [26]. Regulation of $_{WT}RyRs$ and chimeras in membrane fractions was assessed using [³H]Ry binding to probe cation regulation of channel conformation permitting direct analysis of cytoplasmic Ca²⁺ and Mg²⁺ regulation of RyR conformation [6] without confounding influences of varying luminal Ca²⁺ [27].

Ca²⁺ regulation

Ca²⁺ activation of _{WT}RyR1 and _{WT}RyR3 determined by [³H]Ry binding (Fig. 1A) indicated monophasic activation of _{WT}RyR1 (EC₅₀ = $0.54 \pm 0.05 \mu$ M) and biphasic activation of _{WT}RyR3 (EC₅₀₍₁₎ and EC₅₀₍₂₎ = $0.36 \pm 0.06 \mu$ M and $20.0 \pm 5.78 \mu$ M) with a plateau from 4–8 μ M (inset). Similar analyses of Ch-21, -17 and -4 revealed accentuated biphasic Ca²⁺ responses, with plateaus of 20–100 μ M, 10–100 μ M, and 3–100 μ M, respectively (Fig. 1B). Ch-21, -17 and -4 exhibited EC₅₀₍₁₎ values of 0.90 \pm 0.19 μ M, 0.39 \pm 0.09 μ M and 0.18 \pm 0.03 μ M, and EC₅₀₍₂₎ values of 397 \pm 190 μ M, 510 \pm 174 μ M, and 761 \pm 192 μ M, respectively (Table 1).

The biphasic profiles suggest WTRyR3 and chimeras possess reduced cooperativity between H activation sites compared to $w_T Ry R^{1}$. The Ca²⁺ dependence of $w_T Ry R^{3}$ has been previously published based on immunoprecipitated protein and the resulting data fitted using a single-site model indicating monophasic activation of wTRyR3 by Ca²⁺ [28] and [29]. Two significant methodological differences distinguish the present study. First, the use of SR membranes from wTRyR3-expressing 1B5 myotubes preserves known interactions with lumenal proteins such as calsequestrin [26] that are known to contribute to cation regulation of wTRyR1 and wTRyR2 [27] and [30]. Second, the extremely broad titrations in previous studies with immunopurified wrRyR3 consisted of 2-4 data points covering several log range of Ca²⁺ concentrations and would have missed the biphasic activation of wTRyR3 by Ca²⁺ if present after immunopurification. The present study is the first report of a distinctly biphasic activation for WTRyR3 and may result from an altered conformation relative to wTRyR1 that is exaggerated in the chimeras. A slight variation in protein conformation would explain the deviation in chimeric Ca²⁺ activation from that of

Download English Version:

https://daneshyari.com/en/article/1936588

Download Persian Version:

https://daneshyari.com/article/1936588

Daneshyari.com