

Available online at www.sciencedirect.com

BBRC

Biochemical and Biophysical Research Communications 349 (2006) 359-363

www.elsevier.com/locate/ybbrc

CO₂ impairs peroxynitrite-mediated inhibition of human caspase-3 $\stackrel{\text{\tiny{$\Xi$}}}{\sim}$

Paolo Ascenzi ^{a,b,*}, Maria Marino ^a, Enea Menegatti ^c

^a Department of Biology, University 'Roma Tre', Viale Guglielmo Marconi 446, I-00146 Roma, Italy

^b National Institute for Infectious Diseases I.R.C.C.S. 'Lazzaro Spallanzani', Via Portuense 292, I-00149 Roma, Italy

^c Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17-19, I-44100 Ferrara, Italy

Received 31 July 2006 Available online 18 August 2006

Abstract

Peroxynitrite (ONOO⁻) is a transient powerful oxidant produced *in vivo* as the reaction of nitrogen monoxide ('NO) with superoxide $(O_2 -)$. The peroxynitrite reactivity is modulated by carbon dioxide (CO₂) which enhances the peroxynitrite-mediated nitration of aromatics and partially impairs the oxidation of thiols. Here, the effect of CO₂ on the peroxynitrite-mediated inhibition of human caspase-3, the execution enzyme of the apoptotic cascade, is reported. Peroxynitrite inhibits the catalytic activity of human caspase-3 by oxidizing the S γ atom of the Cys catalytic residue. In the absence of CO₂, 1.0 equivalent of peroxynitrite inactivates 1.0 equivalent of human caspase-3. In the presence of the physiological concentration of CO₂ (=1.3 × 10⁻³ M), 1.0 equivalent of peroxynitrite inactivates only 0.38 equivalents of human caspase-3. Peroxynitrite affects the k_{cat} value of the human caspase-3 catalyzed hydrolysis of *N*-acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin, without altering K_m . Both in the absence and presence of CO₂, the reducing agent dithiothreitol does not prevent human caspase-3 inhibition by peroxynitrite and does not reverse the peroxynitrite-induced inactivation of human caspase-3. These results represent the first evidence for modulation of peroxynitrite-mediated inhibition of cysteine proteinase action by CO₂, supporting the role of CO₂ in fine tuning of cell processes (*e.g.*, apoptosis).

© 2006 Elsevier Inc. All rights reserved.

Keywords: Human caspase-3; Cysteine proteinase; Peroxynitrite; Carbon dioxide; Enzyme inhibition

The free radical nitrogen monoxide ('NO), generally known as 'nitric oxide', was first prepared by the action of nitric acid on metals like copper and called 'nitrous air' [1]. More than two centuries later, 'NO was found to be pivotal in many biological functions [2–5].

In 1986, superoxide (O_2^{-}) was reported to be a scavenger of 'NO which at that time was defined as endothelialderived relaxing factor [6]. Soon thereafter peroxynitrite $(ONOO^{-})^{1}$ was identified as the product of the reaction

0006-291X/\$ - see front matter @ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2006.08.050

of $O_2^{\cdot-}$ with 'NO [7]. Peroxynitrite is more reactive than its precursors $O_2^{\cdot-}$ and 'NO [7]. The peroxynitrite ability to oxidize biomolecules (*e.g.*, proteins, lipids, and DNA) is at the root of atherosclerosis, inflammation, and neurodegenerative disorders [3–5,8,9].

Recently, bicarbonate (HCO₃⁻) was reported to decrease the microbicidal effect of peroxynitrite [10,11] and carbon dioxide (CO₂) was shown to react with various free radical species, including peroxynitrite [12–14]. Given that the concentration of CO₂ *in vivo* is relatively high due to high levels of HCO₃⁻ (= 1.3×10^{-3} M and 2.5×10^{-2} M, respectively, in plasma), most of the peroxynitrite produced would rapidly form a very short-living adduct, believed to be 1-carboxylato-2-nitrosodioxidane (ONOOC(O)O⁻). This oxidant, stronger than peroxynitrite, decays by homolysis of the O–O bond yielding the reactive species trioxocarbonate and nitrite radicals CO₃⁻⁻ and 'NO₂, respectively), which then proceed towards

^{*} *Abbreviations:* DEVD-AMC, *N*-acetyl-Asp-Glu-Val-Asp-7-amido-4methylcoumarin; DEVD-CHO, *N*-acetyl-Asp-Glu-Val-Asp-al; DTT, dithiothreitol; Hepes, *N*-(2-hydroxyethyl)piperazine-*N'*-(2-ethanesulfonic acid).

Corresponding author. Fax: +39 06 5517 6321.

E-mail address: ascenzi@uniroma3.it (P. Ascenzi).

¹ The recommended IUPAC nomenclature for peroxynitrite is oxoperoxonitrate(1⁻); for peroxynitrous acid, it is hydrogen oxoperoxonitrate. The pK_a value for the ONOOH \leftrightarrow ONOO⁻ + H⁺ equilibrium is 6.8 (see [19,54]). The term peroxynitrite is used in the text to refer generically to both ONOO⁻ and its conjugate acid ONOOH (see [27]).

nitrate (NO₃⁻) and CO₂, or by directly yielding NO₃⁻ and CO₂ [12–21].

CO₂ facilitates peroxynitrite-mediated oxidation of aromatics. Indeed, most reactions of CO3.- are one-electron oxidations with preference for tyrosine and tryptophan, while NO₂ can undergo recombination with other radical species, addition to double bonds, and one-electron oxidations (but its reducing potential is much lower than that of CO_3 ⁻) [13–28]. In contrast, CO_2 decreases peroxynitritemediated oxidations such as of methionine and cysteine [13]. Indeed, CO₂ outcompetes the thiols for the direct reaction with peroxynitrite as the second order rate constant for reaction of peroxynitrite with cysteine ($\sim 4 \times 10^3 \text{ M}^{-1}$ s^{-1}) is lower than that for reaction with CO₂ $(\sim 3 \times 10^4 \text{ M}^{-1} \text{ s}^{-1})$ [12,13,29–31]. However, thiol oxidation is only partially decreased because of the oxidation mediated by CO₃⁻⁻ and 'NO₂ radicals [31]. Thus, CO₂, generally considered to be inactive, redirects the specificity of peroxynitrite and reduces the lifetime of peroxynitrite (from the second to the millisecond range) [19,20].

Here, the effect of CO_2 on the peroxynitrite-mediated inhibition of the catalytic activity of human caspase-3, a cysteine proteinase displaying a pivotal role in apoptosis [32,33], is reported. CO_2 impairs the peroxynitrite-mediated inhibition of human caspase-3, representing an unexpected modulator of cysteine proteinase action. This supports the role of CO_2 in fine tuning of cell processes (*e.g.*, apoptosis).

Materials and methods

Recombinant human caspase-3, N-acetyl-Asp-Glu-Val-Asp-7-amido-4-methylcoumarin (DEVD-AMC), N-acetyl-Asp-Glu-Val-Asp-al (DEVD-CHO), dithiothreitol (DTT), N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (Hepes), and leupeptin were purchased from Sigma-Aldrich (St. Louis, MO, USA). Human caspase-3 was reductively activated with DTT ($=1.0 \times 10^{-3}$ M) [34], DTT and by-products were removed by gelfiltration on a Sephadex G-25 column (from Pharmacia, Uppsala, Sweden) [35]. The human caspase-3 concentration was determined by active site titration using the inhibitor DEVD-CHO [34]. Peroxynitrite was prepared from KO2 and 'NO (from Aldrich Chemical Company, Inc., Milwaukee, WI, USA) and from HNO2 and H2O2 [36]. The peroxynitrite stock solution was diluted with degassed 1.0×10^{-2} M NaOH to reach the desired concentration [27]. For the experiments carried out in the absence of CO₂, the 1.0×10^{-1} M Hepes buffer (pH = 7.5) and the 1.0×10^{-2} M NaOH solutions were prepared fresh daily and thoroughly degassed. Experiments in the presence of CO₂ (= 1.3×10^{-3} M) were carried out by adding to the human caspase-3 solution the required amount from a freshly prepared 5.0×10^{-1} M sodium bicarbonate solution. The CO₂ concentration is always expressed as the true concentration in equilibrium with HCO₃⁻ [27]. All the other chemicals were obtained from Merck AG (Darmstadt, Germany). All products were of analytical or reagent grade and used without purification.

The catalytic activity of human caspase-3 was measured in continuous assays using the fluorogenic substrate DEVD-AMC, as previously reported [34]. Briefly, DEVD-AMC (final concentration, 1.0×10^{-6} M– 1.0×10^{-4} M range) was added to the human caspase-3 solution (final concentration, 2.0×10^{-7} M– 1.0×10^{-5} M range) and fluorescence (380 nm excitation wavelength, and 460 nm absorption wavelength) was measured continuously over 1 min, at pH 7.5 (1.0×10^{-1} M Hepes buffer) and 25.0 °C. Under all the experimental conditions, no gaseous phase was present.

The effect of peroxynitrite on the catalytic activity of human caspase-3 was determined by incubation of the enzyme (final concentration, $2.0 \times 10^{-7} \text{ M} - 1.0 \times 10^{-5} \text{ M}$ range) with peroxynitrite (final concentration, $1.0 \times 10^{-7} \text{ M}$ and $1.0 \times 10^{-4} \text{ M}$), for 30 min, at pH 7.5 ($1.0 \times 10^{-1} \text{ M}$ Hepes buffer) and 25.0 °C. Then, DEVD-AMC (final concentration, $1.0 \times 10^{-6} \text{ M} - 1.0 \times 10^{-4} \text{ M}$ range) was added to the reaction mixture and the human caspase-3 activity assayed [34,37].

The effect of CO₂ on the peroxynitrite-mediated inhibition of human caspase-3 was investigated by incubation of the enzyme (final concentration, 2.0×10^{-7} M- 1.0×10^{-5} M range) with peroxynitrite (final concentration, 1.0×10^{-7} M and 1.0×10^{-4} M) and CO₂ (= 1.3×10^{-3} M) for 30 min, at pH 7.5 (1.0×10^{-1} M Hepes buffer) and 25.0 °C. Then, DEVD-AMC (final concentration, 1.0×10^{-6} M– 1.0×10^{-4} M range) was added to the reaction mixture and the caspase-3 activity assayed [34,37].

The effect of DTT on the peroxynitrite-mediated inhibition of caspase-3, in the absence and presence of CO₂ (= 1.3×10^{-3} M), was investigated by the simultaneous incubation of the active enzyme (final concentration, 2.0×10^{-7} M -1.0×10^{-5} M range) with DTT (final concentration, 1.0×10^{-3} M) and peroxynitrite (final concentration, 1.0×10^{-4} M) for 30 min, at pH 7.5 (1.0×10^{-1} M Hepes buffer) and 25.0 °C. Then, the catalytic activity of caspase-3 was assayed using DEVD-AMC (final concentration, 1.0×10^{-4} M) [34]. Furthermore, the inactivated enzyme, obtained by 1.0×10^{-4} M peroxynitrite-pre-treatment in the absence and presence of CO₂, was incubated with DTT (final concentration, 1.0×10^{-3} M) for 30 min, at pH 7.5 (1.0×10^{-1} M Hepes buffer) and 25.0 °C. Then, the enzyme catalytic activity was assayed using DEVD-AMC (final concentration, 1.0×10^{-4} M) [34].

The steady-state data for the human caspase-3 catalyzed hydrolysis of DEVD-AMC, both in the absence and presence of peroxynitrite and CO₂, were analyzed in the framework of the classical minimum two-step mechanism (Scheme 1):

$$\mathbf{E} + \mathbf{S} \stackrel{K_{\text{max}}}{\leftrightarrow} \mathbf{X} \stackrel{K_{\text{cat}}}{\to} \mathbf{E} + \mathbf{P}, \tag{Scheme 1}$$

where E is human caspase-3, S is the substrate (*i.e.*, DEVD-AMC), X represents the enzyme-substrate and enzyme-product intermediates, P indicates the hydrolysis products (*i.e.*, DEVD and AMC), k_{cat} (= $V_{max}/[E]$) is the catalytic constant, and K_m is the Michaelis constant [34]. Values of k_{cat} and K_m have been determined from data analysis according the classical Michaelis-Menten equation (Eq. (1)):

$$v_{i} = k_{cat} \times [E] \times [S]/(K_{m} + [S]), \qquad (1)$$

where v_i is the initial velocity [38].

Results

The hydrolysis of DEVD-AMC catalyzed by human caspase-3 follows simple Michaelis-Menten kinetics, in the absence and presence of peroxynitrite and CO_2 (Fig. 1). Under all the experimental conditions, the initial velocity (*i.e.*, v_i) for the hydrolysis of DEVD-AMC catalyzed by human caspase-3 is strictly linear on the active enzyme concentration (Fig. 2 and Table 1).

Values of k_{cat} and K_m for the human caspase-3 catalyzed hydrolysis of DEVD-AMC obtained in the absence of peroxynitrite and CO₂ (=12.9 s⁻¹ and 8.6×10⁻⁶ M, respectively, at pH 7.5 and 25.0 °C; Fig. 1) are in excellent agreement with those previously reported ($k_{cat} = 14.0 \text{ s}^{-1}$ and $K_m = 1.0 \times 10^{-5}$ M, at pH 7.5 and room temperature) [34]. In the absence of peroxynitrite, values of steady-state parameters for the hydrolysis of DEVD-AMC catalyzed by human caspase-3 are unaffected by CO₂ (=1.3×10⁻³ M), values of k_{cat} and K_m being 13.4 s⁻¹ and 8.8×10⁻⁶ M, respectively, at pH 7.5 and 25.0 °C (Fig. 1). Download English Version:

https://daneshyari.com/en/article/1939093

Download Persian Version:

https://daneshyari.com/article/1939093

Daneshyari.com