

Available online at www.sciencedirect.com

BBRC

Biochemical and Biophysical Research Communications 342 (2006) 800-807

www.elsevier.com/locate/ybbrc

Probing conformations of the β subunit of F_0F_1 -ATP synthase in catalysis

Tomoko Masaike ^{a,b,c}, Toshiharu Suzuki ^{a,b}, Satoshi P. Tsunoda ^d, Hiroki Konno ^b, Masasuke Yoshida ^{a,b,*}

^a ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation (JST),

5800-3 Nagatsuta, Yokohama 226-0026, Japan

^b Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
^c Department of Physics, Faculty of Science, South 4 Building, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
^d Experimentelle Biophysik, Institut fuer Biologie, Humboldt-Universitaet, Invaliden Strasse 43, 10115 Berlin, Germany

Received 30 January 2006 Available online 17 February 2006

Abstract

A subcomplex of F_0F_1 -ATP synthase (F_0F_1), $\alpha_3\beta_3\gamma$, was shown to undergo the conformation(s) during ATP hydrolysis in which two of the three β subunits have the "Closed" conformation simultaneously (CC conformation) [S.P. Tsunoda, E. Muneyuki, T. Amano, M. Yoshida, H. Noji, Cross-linking of two β subunits in the closed conformation in F_1 -ATPase, J. Biol. Chem. 274 (1999) 5701– 5706]. This was examined by the inter-subunit disulfide cross-linking between two mutant β (I386C)s that was formed readily only when the enzyme was in the CC conformation. Here, we adopted the same method for the holoenzyme F_0F_1 from *Bacillus* PS3 and found that the CC conformation was generated during ATP hydrolysis but barely during ATP synthesis. The experiments using F_0F_1 with the ε subunit lacking C-terminal helices further suggest that this difference is related to dynamic nature of the ε subunit and that ATP synthesis is accelerated when it takes the pathway involving the CC conformation.

© 2006 Elsevier Inc. All rights reserved.

Keywords: F0F1; ATP synthase; F1-ATPase; Conformational change; Rotation; Motor protein

 F_0F_1 -ATP synthase is prevalent in plasma membranes of bacteria, inner mitochondrial membranes of eukaryotic cells, and chloroplast thylakoid membranes of plant cells. Its function, ATP synthesis at the catalytic subunit β is driven by proton flow down the gradient of electrochemical potential of proton across the membranes. F_1 , consisting of $\alpha_3\beta_3\gamma\delta\epsilon$, is easily and reversibly detached from F_0 part and can catalyze ATP hydrolysis. A subcomplex of F_1 , $\alpha_3\beta_3\gamma$, also has ATPase activity comparable to that of F_1 . In ATP hydrolysis, free energy liberated from hydrolysis of ATP at the catalytic subunit β is used for driving rotation of the central stalk subunits γ , ϵ , and c_{10-14} [1–3].

E-mail address: myoshida@res.titech.ac.jp (M. Yoshida).

Different catalytic states of the β subunit denoted by β_T , β_D , and β_E were revealed in a crystal structure of $\alpha_3\beta_3\gamma$ [4] according to nucleotide binding states. They bind AMP– PNP, ADP, and no nucleotide, respectively, at the catalytic site. In that structure, β_D was assumed to have the "tight" catalytic state because of tight interactions with the α subunit. Moreover, characteristic features of β_D were shown in another crystal structure [5] : the guanidinium group of $\alpha R373$ and the water molecule involved in catalysis are both placed closer to BeF₃⁻ (mimicking γ -phosphate) compared to β_T to enable hydrolysis of ATP.

In relation to these different states of the β subunit, the β subunit was in two conformations in the crystal structure [4]. One is "Closed form" (denoted by C) for β_T and β_D , in which the C terminal domain of the β subunit is lifted up toward the N terminal domain. The other is "Open form" (denoted by O) in which the catalytic site is empty

^{*} Corresponding author. Fax: +81 45 924 5277.

⁰⁰⁰⁶⁻²⁹¹X/\$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2006.02.017

 $(\beta_{\rm F})$ and C terminal domain of the β subunit is in a relaxed form away from the N terminal domain. Comparisons of these two conformations suggest that the conformational transition arises from the domain-motions of the β subunit, which have become a focus in solving the mechanism of driving rotation [6]. Close look at the crystal structure [4] revealed that when two of the three β subunits are in the Closed conformation (denoted "CC conformation" hereafter), a β I386 residue in a Closed β comes into contact with the same residue in another Closed β although Open β does not (as in Fig. 1 [7]). In the previous study of β (I386C) mutant of $\alpha_3\beta_3\gamma$ from a thermophilic *Bacillus* PS3 [8], simultaneous occurrence of two Closed B subunits during ATP hydrolysis was confirmed by the β - β dimer formation which resulted from inter-subunit cross-linking between I386C residues of the two β (I386C) subunits.

Illustration of conformational changes of the β subunit has become more complex as a new conformation of the β subunit in between open and closed conformations was found in the crystal structure whose three catalytic sites were all occupied by nucleotides [9]. The third conformation of β in this structure was named "Half-closed."

Moreover, conformations of the ε subunit must be taken into account in the case we discuss conformations of β in the whole F_1 and F_0F_1 . The ε subunit was known to be involved in catalysis by changing binding affinities of nucleotides to the β subunits [10] and distinguishing between different conformations of the β subunit [11]. Recently, the C-terminal helices of the ε subunit have been found to undergo drastic conformational changes and regulate ATPase activity [12-20]. When the C-terminal helices of the ε subunit are in the extended form that is induced by increase in proton motive force and ADP concentration, hydrolysis activity is largely suppressed although ATP synthesis apparently remains [17,18]. Meanwhile, when the C-terminal helices of the ε subunit are in the hairpin-folded form, ATP hydrolysis activity is not attenuated [17,18]. Most recently, the ε subunit was shown to play an important role in efficient synthesis of ATP [21]. With the ε subunit in the F₁ complex, tight coupling of ATP synthesis, that is, three ATPs produced by a forced 360°-rotation of γ , was achieved.

Thus, behaviors of the ε subunit and its relationship with activities are partly disclosed, but their relationship with conformational changes of the β subunit during catalysis has not been clarified yet.

The previous studies of the $\alpha_3\beta(I386C)_{3\gamma}$ mutant gave understanding of conformations of β under limited conditions: during ATP hydrolysis and without ε subunit. In the present studies, conformations of the β subunit for both ATP synthesis and hydrolysis are illustrated by relating to conformational changes of ε . For this purpose, the $\beta(I386C)$ mutation was introduced into $F_1(\alpha_3\beta_3\gamma\delta\varepsilon)$ and F_0F_1 from thermophilic *Bacillus* PS3. Cross-linking studies and measurements of ATP synthesis activities indicated that CC conformation of the β subunit does not appear during ATP synthesis due to extended conformation of ε , which attenuated ATP synthesis activity.

Materials and methods

Buffers. PA3, 10 mM HEPES–KOH, pH 7.5, containing 5 mM MgCl₂, and 10% glycerol; PA4, 10 mM HEPES–KOH, pH 7.5, containing 100 mM KCl, and 5 mM MgCl₂; KP_i buffer, 100 mM potassium phosphate, pH 7.0, 100 mM KCl, and 2 mM of 1,2-cyclohexanediaminetetra-acetic acid monohydrate (CDTA).

Strains and plasmids. The pTABG3- β (I386C) plasmid [8] in Escherichia coli strain JM103 Δ uncB-D [22] from the previous work was used for expression of $\alpha_{3}\beta$ (I386C)₃ γ mutant. This strain leaves uncC (ϵ subunit) on the chromosome. Nevertheless, incorporation of *E. coli* ϵ subunit into the expressed $\alpha_{3}\beta_{3}\gamma$ complex of PS3 did not occur. A plasmid pTR19-ASDS- β (I386C) carrying a gene for F₀F₁ from thermophilic Bacillus PS3 whose β subunit contains I386C mutation was also prepared. This plasmid was used for transformation of an *E. coli* strain DK8 [bglR, thi-1, rel-1, HfrPO1, Δ (uncB-uncC), ilv::Tn10] [23] that lacked the whole F₀F₁ genes. It was used for preparation of F₁(β I386C) and F₀F₁(β I386C). In addition, both wild type and β (I386C) mutant of F₁ and F₀F₁ lacking C-terminal helices of the ϵ subunit (denoted by $\epsilon^{\Delta C}$) were prepared by introducing a stop codon and a *PstI* site just after ϵ Asp87.

Preparation of $\alpha_3\beta_3\gamma$, *F*₁ *and inverted E. coli membrane vesicles containing F*₀*F*₁ *from thermophilic Bacillus PS3.* The *E. coli* JM103*Δunc*B-D which contained pTABG3-β(I386C) plasmid was cultivated in the terrific broth containing 100 µg/ml of ampicillin for 16 h at 37 °C. The cells were harvested and the proteins were purified as described previously [24]. The steady-state ATPase activities of $\alpha_3\beta(I386C)_{3\gamma}$, *F*₁(β I386C), and *F*₁(β I386C/ $\epsilon^{\Delta C}$) were 1.3 U/mg for $\alpha_3\beta(I386C)_{3\gamma}$, 2.2 U/mg for *F*₁(β I386C/ $\epsilon^{\Delta C}$) at 45 °C in the presence of 2 mM ATP. The *E. coli* DK8 which harbors pTR19-ASDS plasmid [25] was cultivated for 17 h and treated as described previously [25] for preparation of *F*₀*F*₁ in membrane vesicles and purified *F*₁. The *F*₁ samples were stored in -80 °C, and the final purification was performed in the same procedures as that of the $\alpha_3\beta(I386C)_{3\gamma}$ subcomplex.

Expression of ε^{AC} subunit was confirmed by MALDI-TOF MS measurements (AXIMA CFR-Plus, Shimadzu, Kyoto). The average mass of ε of F₁(β I386C/ ε^{AC}) was 9215.3, which was in good agreement with the expected average mass of 9210.5.

Inter-subunit Cross-linking of $\beta(I386C)$ mutants. To compare crosslinking efficiencies, $1 \mu M$ of $\alpha_3\beta(I386C)_{3\gamma}$, $F_1(\beta I386C)$, and $F_1(\beta I386C)$ $\epsilon^{\Delta C}$) from final purification by gel filtration were each incubated with $10\,\mu M$ CuCl_2 at 45 °C for 5 min. in PA4 buffer (containing 5 mM MgCl_2) in the presence or absence of 1 mM of nucleotides (Mg-ATP, Mg-ADP, Mg-AMP-PNP, and Mg-ATP-yS). ATP-regenerating system was concurrently added in the case of ATP (0.1 mg/ml pyruvate kinase and 2.5 mM phosphoenolpyruvate), and, in the case of ADP, hexokinase (10 U/ml) and glucose (30 mM) were added to eliminate contaminated ATP. As control experiments, incubations with 1 mM DTT and without any added reagents were also performed under the same conditions. The cross-linking reactions were terminated by addition of 10 mM of N-ethylmaleimide. They were then subjected to non-reducing polyacrylamide gel electrophoresis (SDS-PAGE). Formation of cross-linking was confirmed by appearance of new bands at the position of β - β dimer and decrease in density of bands of β monomer. The same protocols were applied to the cross-linking studies of membrane vesicles containing F_0F_1 except for the differences in the following conditions: 1 mg/ml membrane protein was used for cross-linking. Incubation was performed with 20 µM CuCl₂ for 10 min. The same experiments were also carried out using BI386C-less enzymes as controls and absence of cross-linking was confirmed.

Measurements of ATPase activity. Pretreatment of membrane vesicles was carried out as follows: in the case of investigating the effects of crosslinking on ATPase activity, 1 mg/ml of membrane vesicles was treated with either 1 mM DTT or 1 mM Mg–ATP plus 50 μ M CuCl₂ in PA4 buffer at 45 °C for 10 min, which was terminated by addition of 1 mM EDTA. It also has an effect to chelate Cu²⁺ from membranes. In the case of a measurement of DCCD (*N*,*N*'-dicyclohexylcarbodiimide) sensitivity, 2 mg/ml of membrane vesicles was treated with the same volume of 200 μ M DCCD in 100 mM Tris–HCl, pH 8.8. Incubation and termination Download English Version:

https://daneshyari.com/en/article/1939913

Download Persian Version:

https://daneshyari.com/article/1939913

Daneshyari.com