

Available online at www.sciencedirect.com

ELECTROCHIMICA Acta

Electrochimica Acta 53 (2007) 42-45

www.elsevier.com/locate/electacta

Chlorophyll assembled electrode for photovoltaic conversion device

Yutaka Amao*, Koichi Kato

Department of Applied Chemistry, Oita University, 700 Dannoharu, Oita 870-1192, Japan

Received 29 November 2005; received in revised form 26 February 2007; accepted 27 February 2007

Available online 4 March 2007

Abstract

Chlorophyll-*a* (Chl-*a*) assembled in hydrophobic domain by fatty acid with long alkyl hydrocarbon chain such as myristic acid (Myr), stearic acid (Ste) and cholic acid (Cho) modified onto nanocrystalline TiO₂ electrode is prepared and the photovoltaic properties of the nanocrystalline TiO₂ film by Chl-*a* are studied. Incident photon to current efficiency (IPCE) value at 660 nm in photocurrent action spectrum of Chl-*a*/Ste-TiO₂, Chl-*a*/Myr-TiO₂ and Chl-*a*/Cho-TiO₂ electrodes are 5.0%, 4.1% and 4.1%, respectively. Thus, the IPCE is maximum using Chl-*a*/Ste-TiO₂ electrode. From the results of photocurrent responses with light intensity of 100 mW cm⁻² irradiation or monochromatic light with 660 nm, generated photocurrent increases using Chl-*a*/Ste-TiO₂ electrode compared with the other Chl-*a* assembled TiO₂ electrodes. These results show that the hydrophobic domain formed by stearic acid with long alkyl hydrocarbon chain is suitable for fixation of Chl-*a* onto TiO₂ film electrodes and photovoltaic performance is improved using Chl-*a* onto Ste-TiO₂ film electrode.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Chlorophyll; Photosynthesis; Nanocrystalline TiO2 film; Photovoltaic conversion system; Hydrophobic effect

1. Introduction

Chlorophyll-a and -b (Chl-a and -b) act as the light-harvesting in photosynthesis of green plant and exhibit physiological functions of the photolysis of water, the reduction of NADP+ and carbon dioxide fixation under visible light irradiation [1]. Chlorophylls consist of Mg porphyrin ring and phytol group. Chl-a has absorption maxima at 432 and 670 nm and is attractive compound as a visible photosensitizer for the means of converting solar energy to chemical energy or such as a photoinduced hydrogen evolution to electrochemical energy. Many studies on the photovoltaic conversion system using chlorophyll derivatives have been reported [2–8]. In these reports, the photovoltaic conversion system using chlorophyll derivatives is directly immobilized onto electrode such as optical transparent electrode (OTE) with TiO₂ layer. For cell based on dye-sensitized TiO₂ [9], the carboxylic acid substituents in dye molecule are essential for anchoring on the surface of TiO₂. The carboxylate groups establish an electronic coupling with the 3d conduction band orbital manifold of Ti [10,11]. As Chl-a is attractive compound as a visible photosensitizer, no carboxylate

group exists in Chl-a molecules. However, Chl-a is not fixed via covalent bond and fixed via coordination with an imidazole site of the histidine residue as an axial ligand in the hydrophobic domain of proteins plays an important in the natural photosynthesis proteins [12–14]. Thus, the hydrophobic domain of proteins will act as an important role for the fixation of Chl-a molecules in the natural photosynthesis systems.

In this work, Chl-a assembled in hydrophobic domain by fatty acid with long alkyl hydrocarbon chain such as myristic acid, stearic acid and cholic acid (chemical structures are shown in Fig. 1) modified onto nanocrystalline ${\rm TiO_2}$ electrode is prepared and the photovoltaic properties of the nanocrystalline ${\rm TiO_2}$ film by Chl-a are studied.

2. Experimental section

2.1. Materials

Chl-a was purchased from Juntech Corporation. Myristic acid, stearic acid and cholic acid were purchased from Tokyo Kasei Chemicals. Titanium dioxide powder (P25) was purchased from Degussa. The 0.05 mol dm⁻³ I₂/0.5 mol dm⁻³ LiI in ethylene glycol/acetonitrile solution was obtained from Sol Ideas Technology Development. The other chemicals were analytical grade or the highest grade available. Conductive glass plate

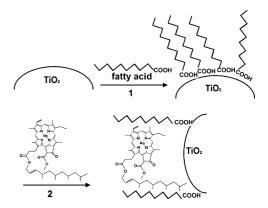
^{*} Corresponding author. Fax: +81 97 554 7972. E-mail address: amao@cc.oita-u.ac.jp (Y. Amao).

Fatty acid

Fig. 1. Chemical structures of myristic acid (Myr), stearic acid (Ste) and cholic acid (Cho).

(10–15 Ω/\Box SnO₂: fluorine coated) as an optical transparent electrode (OTE) substrate was obtained from Nihon Sheet Glass Co. Ltd.

2.2. Preparation of nanocrystalline TiO₂ film electrode


The nanocrystalline TiO_2 film was prepared by a similar procedure to that described in the literature [15,16]. TiO_2 powder was dispersed by grinding in concentrated nitric acid aqueous solution (pH 1.0). The viscous suspension was spread onto OTE (1 cm \times 3 cm) at room temperature using scotch tape as a spacer. A thin film was obtained by raking off the excess of suspension with a glass rod. After the tape was removed and the plate was dried using hot plate at 80 °C for 30 min, this plate was annealed at 450 °C for 30 min under ambient condition to form a nanocrystalline TiO_2 film electrode. The thickness of the film, determined by using a micron-sensitive caliper, was about $10 \, \mu m$. The geometric area of electrode was $1.0 \, cm^2$.

2.3. Preparation of platinum-coated OTE electrode

The platinum-coated OTE electrode was prepared by thermal decomposition of H_2PtCl_6 from 2-propanol on an OTE substrate as following method. An OTE glass plate was dipped into $1.0~\text{mmol}~\text{dm}^{-3}~H_2PtCl_6$ in 2-propanol at room temperature for 30 min. After dipping, the plate was dried at room temperature for 30 min under ambient condition and then annealed at 380~C for 30 min under ambient condition. The geometric area of electrode was $1.0~\text{cm}^2$.

2.4. Preparation of Chl-a assembled onto nanocrystalline TiO_2 film electrode

Chl-a assembled onto nanocrystalline TiO₂ electrode was prepared according to the method as shown in Scheme 1. At first, nanocrystalline TiO₂ film electrode was dipped into 0.2 mmol dm⁻³ methanol solution of fatty acid such as myristic acid (Myr), stearic acid (Ste) and cholic acid (Cho) at room temperature for 24 h (step 1 in Scheme 1). After dipping, the electrode was washed with methanol several times and then was dried under vacuum overnight. Fatty acid adsorbed on a nanocrystalline TiO₂ film electrode was dipped into 0.2 mmol dm⁻³ methanol solution of Chl-a at room temperature for 24 h (step 2 in Scheme 1). After dipping, the electrode was washed with methanol several times and then was dried

Scheme 1. Procedures of preparation of Chl-*a* assembled onto fatty acid modified TiO₂ film electrodes. 1: Modification of fatty acid onto TiO₂ film electrodes; 2: immobilization of Chl-*a* onto the electrode.

under vacuum overnight. Each electrode is referred to as Chl-a/Ste-TiO₂, Chl-a/Myr-TiO₂ and Chl-a/Cho-TiO₂, respectively. The amount of Chl-a molecules adsorbed onto nanocrystalline TiO₂ electrode was determined using a spectrophotometer (Multispec-1500 Shimadzu) according to a method previously reported [17]. The UV–vis absorption spectra of Chl-a/Ste-TiO₂ (solid), Chl-a/Myr-TiO₂ (dash) and Chl-a/Cho-TiO₂ (dotted) are shown in Fig. 2.

2.5. Photocurrent action spectra measurement

A 400 W xenon lamp with a monochromator was used as light source for photocurrent action spectra measurements. The cell was operated in the short-circuit mode without applied potential. Photocurrent action spectrum was measured with a sandwich type cell. The working electrode with Chl-a assembled on TiO₂ film was gently squeezed together with a platinum-coated OTE glass electrode as a counter electrode using spring and irradiated from the working electrode side. The 0.05 mol dm⁻³ I₂/0.5 mol dm⁻³ LiI in ethylene glycol/acetonitrile solution was used as the redox electrolyte. The distance between the working and counter electrode was 0.1 mm. The photocurrent is measured with the digital multimeters with model 34401A (Agilent). The

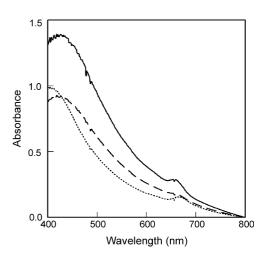


Fig. 2. UV–vis absorption spectra of Chl-a/Ste-TiO₂ (solid), Chl-a/Myr-TiO₂ (dash) and Chl-a/Cho-TiO₂ (dotted).

Download English Version:

https://daneshyari.com/en/article/194021

Download Persian Version:

https://daneshyari.com/article/194021

<u>Daneshyari.com</u>