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a b s t r a c t

The paper presents a model of a spherical cell. The transmembrane potential on cell membrane is obtained by

solving the Laplace’s equation. The frequency dependence of the transmembrane potential in pulsed electric fields

is described. The value of transmembrane potential decreases as the frequency of external electric field increases.

And there is a range of frequency for the value of transmembrane potential to decrease fast. It is shown that there

is a strong relationship between the value of transmembrane potential and frequency components contained in

the pulse. With more low-frequency components, the value of transmembrane potential is increasing and thus a

better sterilization effect can be obtained. By comparing the frequency components contained in square wave pulse,

exponentially decaying pulse, oscillatory pulse and their sterilization effect respectively, the analysis results about

the relationship of transmembrane potential-frequency presented in this paper is validated.
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1. Introduction

Pulsed electric field food processing is one of non-thermal
food preservation methods. In this method, food is exposed
to a pulsed electric field. Transmembrane potential is induced
on the cell membrane of bacteria by the pulsed electric field
applied. The value of the transmembrane potential increases
as the external electric field intensity increases. When elec-
tric field intensity exceeds a critical value, cell membrane may
breakdown. Consequently, the object of food sterilization is
achieved (Xu and Wang, 2005). Comparing to the thermal food
processing that is widely used, protein is not damaged, vita-
mins and volatile flavors are not loss and the sensory and
nutritional properties remain.

Assuming that the geometric parameters of bacteria are
not affected by frequency and intensity of pulsed electric field,
the transmembrane potential depends on the frequency of the
electric field and its value varied significantly. For the three
types of pulsed electric field mostly used in food processing,
the transmembrane potential on cell membrane of bacteria
caused by frequency components contained in the pulses are
different.
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2. Theory

The spherical model of a bacterium is shown in Fig. 1 (Pavlin
and Miklavcic, 2003). The inside radius and outside radius
of the membrane are denoted by ri and re respectively.
The complex conductivity of cytoplasm, cell membrane and
extracellular solution are denoted by �∗

i
, �∗

im
and �∗

e respec-
tively. Assuming the extracellular solution, cytoplasm and cell
membrane are linear, isotropic, and homogeneous dielectric
medium. The electric potential at any point is satisfies the
Laplace’s equation. The Laplace’s equation can be expressed
as Eq. (1) in spherical coordinate (Guru and Hiziroglu,
2004)
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Taking the spherical center as the original point, there is sym-
metry about ϕ co-ordinate, that is, solutions depend on r and
� but not on ϕ. Then Eq. (1) reduces to
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Nomenclature

re outside radius
ri inside radius

Greek symbols
εi permittivity of cytoplasm
εim permittivity of cell membrane
εe permittivity of extracellular solution
� conductivity
�∗

e complex conductivity of extracellular solution
�∗

i
complex conductivity of cytoplasm

�∗
im

complex conductivity of cell membrane
� electric potential
�i electric potential in cytoplasm
�im electric potential in cell membrane
�e electric potential in extracellular solution
��m transmembrane potential of cell membrane
ε permittivity
�i conductivity of cytoplasm
�im conductivity of cell membrane
�e conductivity of extracellular solution
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By solving for � in a separable form �(r,�) = 	(r)
(�) (Sun and
Liu, 2000), Eq. (2) becomes

1
	

(
r2 ∂2	

∂r2
+ 2r

∂	

∂r

)
= − 1




(
∂2


∂�2
+ ctg �

∂


∂�

)
(3)

The left-hand side of Eq. (3) depends only on r, while the right-
hand side depends only on �. This can only occur when both
sides are equal to a constant, denoted by ˛
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Let ˛ = n(n + 1). Eq. (4) then satisfies the Euler equation
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− n(n + 1)	 = 0 (6)

Eq. (6) has the solution

	 = a1rn + a2r−(n+1) (7)

In terms of ˛ = n(n + 1), Eq. (5) takes the form of
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Substituting x = cos � and 
 = P(x) into Eq. (8), it can be written
as

(1 − x2)
d2P

dx2
− 2x

dP

dx
+ n(n + 1)P = 0 (9)

The solution of Eq. (9) is given by the Legendre polynomials
Pn(x).

Fig. 1 – The spherical model for bacterium.

Therefore, the general potential solutions associated with
the three media are

�i =
∞∑

n=0

[Anrn + Bnr−(n+1)]Pn(cos �), 0 < r ≤ ri (10)

�im =
∞∑

n=0

[Cnrn + Dnr−(n+1)]Pn(cos �), ri < r ≤ re (11)

�e =
∞∑

n=0

[Enrn + Fnr−(n+1)]Pn(cos �), r > re (12)

where An, Bn, Cn, Dn, En, Fn are constants to be determined;
Pn(cos �) is Legendre Polynomials; n is any positive integer
including 0.

The intracellular potential remains infinite as r → 0
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n=0

AnrnPn(cos �) (13)

The extracellular potential �e tends to applied electric field
potential as r → ∞

�e = −E0(t)r cos � +
∞∑
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Fnr−(n+1)Pn(cos �) (14)

The electric potential and the normal components of current
densities at the interface between dielectrics are continu-
ous under time-varying electric field (Vladimir et al., 2001).
Therefore, the boundary conditions at each interface can be
expressed as follows:
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