ELSEVIER

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbamem

Review

Pore-forming toxins: Properties, diversity, and uses as tools to image sphingomyelin and ceramide phosphoethanolamine*

Akiko Yamaji-Hasegawa^a, Françoise Hullin-Matsuda^{a,b}, Peter Greimel^a, Toshihide Kobayashi^{a,b,*}

^a Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

^b INSERM U1060, Université Lyon 1, Villeurbanne, 69621, France

ARTICLE INFO

Article history: Received 1 August 2015 Received in revised form 30 September 2015 Accepted 14 October 2015 Available online 21 October 2015

Keywords: Lipid domains Lipid imaging Actinoporin Aegerolysin Lysenin Equinatoxin

ABSTRACT

Pore-forming toxins (PFTs) represent a unique class of highly specific lipid-binding proteins. The cytotoxicity of these compounds has been overcome through crystallographic structure and mutation studies, facilitating the development of non-toxic lipid probes. As a consequence, non-toxic PFTs have been utilized as highly specific probes to visualize the diversity and dynamics of lipid nanostructures in living and fixed cells. This review is focused on the application of PFTs and their non-toxic analogs as tools to visualize sphingomyelin and ceramide phosphoethanolamine, two major phosphosphingolipids in mammalian and insect cells, respectively. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.

© 2015 Elsevier B.V. All rights reserved.

Contents

1.	Introd	duction	77				
2.	Bioph	nysical properties of sphingomyelin and ceramide phosphoethanolamine	78				
3.	Bioche	Biochemistry of sphingomyelin and ceramide phosphoethanolamine					
	3.1	Prevalence in the kingdoms of life and molecular species composition	78				
	32	Biosynthesis and cellular distribution	78				
Δ	Curren	biosymmetry and economic and advantages/limitations of using pare-forming toxing	81				
4.	Curren	the interious to image splingoingenit, overview and advantages/initiations of using pore-forming toxins	01				
	4.1.	Sphingolipid analogs and "clickable" lipid precursors	81				
		4.1.1. Fluorescent analogs	81				
		4.1.2. Clickable precursors	82				
		4.1.3. Spin-labeled analogs	82				
	4.2.	Mass spectrometry imaging	82				
	4.3.	Sphingolipid-binding probes	82				
		4.3.1. Antibodies	82				
		4.3.2. Toxins	82				
	44	Advantages and limitations of PETs	83				
	1. 1.		:00				
		4.4.1. Auvanages of PT15	03				
		4.4.2. Limitations of PFTs	83				

* This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.

* Corresponding author at: Lipid Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

E-mail address: kobayasi@riken.jp (T. Kobayashi).

Abbreviations: AFM, atomic force microscopy; Chol, cholesterol; CPE, ceramide phosphoethanolamine; CTxB, cholera toxin B subunit; DOPC, 1,2-dioleoyl-*sn*-glycero-3-phosphocholine; DPPC, 1,2-dipalmitoyl-*sn*-glycero-3-phosphocholine; EM, electron microscopy; EqtIl, equinatoxin II; EryA, erylysin A; ER, endoplasmic reticulum; IPC, inositol phosphoceramide; MβCD, methyl-β-cyclodextrin; MDCK, Madin–Darby canine kidney; NPA, Niemann Pick disease type A; NT-lysenin, non-toxic lysenin; Oly, ostreolysin; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PFT, pore-forming toxin; PI(4,5)P₂, phosphatidylinositol 4,5-bisphosphate; PlyA2, pleurotolysin A2; PS, phosphatidylserine; SDS-FRL, SDS-digested freeze-fracture replica labeling; SL, sphingolipid; SM, sphingomyelin; SMase, sphingomyelinase; SMS, sphingomyelin synthase; SMSr, sphingo

5.	Actinoporins: overview and applications in lipid imaging						
	5.1.	Lipid sp	pecificity of actinoporins	583			
		5.1.1.	Sticholysin I & II	583			
		5.1.2.	Equinatoxins	583			
		5.1.3.	FraC	584			
		5.1.4.	Src I	584			
		5.1.5.	RTX and Hct	584			
		5.1.6.	Avt-I	584			
		5.1.7.	Caissarolysin I	584			
		5.1.8.	Gigantoxin-4	584			
		5.1.9.	HALT	584			
		5.1.10.	Clamlysin	584			
	5.2.	Lipid in	maging using actinoporins	584			
6.	6. Aegerolysin protein family: overview and applications in lipid imaging						
	6.1.	Overvie	iew of aegerolysins	585			
		6.1.1.	Aegerolysin	585			
		6.1.2.	Asp-hemolysin	585			
		6.1.3.	Terrelysin	585			
		6.1.4.	Ostreolysin and pleurotolysin A	585			
		6.1.5.	Erylysin	585			
					6.1.6.	Pleurotolysin A2	585
	6.2.	Lipid in	maging using aegerolysins	585			
7.	Lysenin: overview and applications in lipid imaging						
	7.1.	Lipid sp	pecificity of lysenin	586			
	7.2.	Lipid in	maging using lysenin	587			
8.	Concl	lusion-per	erspectives	588			
Con	flict of		588				
Ack	nowled	lgments .		588			
References							

1. Introduction

Sphingolipids (SLs) constitute a group of essential lipid components that affect membrane structures and participate in a wide range of biological functions, such as cell growth, endocytosis, and secretion [1]. In recent decades, knowledge of the sphingolipidome has improved considerably, reflecting progress in the mass spectrometry techniques that are used to reveal the structural diversity of these molecules. Additionally, state-of-the art microscopy approaches not only reveal the assembly but the incredible dynamics of these compounds. SLs have

attracted extensive interest because of their ability to form distinctive domains or lipid rafts in the presence of cholesterol (Chol), exhibiting a considerable degree of lateral mobility [2,3]. In this review, we will focus on the visualization of two phosphosphingolipids, namely sphingomyelin (SM), a major SL in the mammalian plasma membrane, and its analog, ceramide phosphoethanolamine (CPE), detected in trace amounts in mammalian cells and in bulk amounts in insect cells and certain parasitic forms of Trypanosoma.

As the majority of lipids, including phosphosphingolipids, are not intrinsically fluorescent, a variety of lipid probes have been identified and

Fig. 1. Structure of the main lipids described in this review.

Download English Version:

https://daneshyari.com/en/article/1944003

Download Persian Version:

https://daneshyari.com/article/1944003

Daneshyari.com