Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbagen

Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity

Aditya Iyer, Anil Chandra, Rajaram Swaminathan *

Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

A R T I C L E I N F O

Article history: Received 6 January 2014 Received in revised form 22 May 2014 Accepted 9 June 2014 Available online 14 June 2014

Keywords: Semiconductor nanocrystals Hen egg white lysozyme Alkaline phosphatase Acetylcholinesterase Enzyme catalytic activity Luminescence

ABSTRACT

Background: Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot–enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin–biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot. *Methods:* The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (ACHE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.

Results: We demonstrate that all enzymes retain full catalytic activity in the quantum dot–enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.

Conclusions: We reasoned that avidin–biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity. *General significance:* Overall our results demonstrate for the first time that streptavidin–biotin chemistry can yield

quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum dots are tiny (~10 nm) semiconductor nanocrystals that are excellent luminescent labels for biomolecules owing to their bright luminescence in visible-NIR region, size-tunable narrow emission band, superior photostability and broad absorption spectrum for simultaneous excitation of multiple probes in comparison with traditional organic dyes and fluorescent proteins [1]. QDs today find applications in improving photovoltaic devices [2,3], assembling sophisticated biophotonic logic devices [4,5], creating novel thermodynamic machines [6,7] apart from being used for sensing glutathione selectively [8], sensing NO₂ [9], and sensing clenbuterol and melamine [10], as light-emitting devices [11,12] and as active drug tracers *in vivo* [13, 14]. Of late, they have also found extensive applications in biology as cellular probes for immunolabeling, multimodal *in vivo* and live animal imaging [15,16], cellular tracking and related applications [17–19].

QD bioconjugates have served as fluorescent labels for both *in vivo* cellular imaging and *in vitro* assay detection [20]. Combining the

* Corresponding author. *E-mail address:* rsw@iitg.ernet.in (R. Swaminathan). brightness of QD luminescence with remarkable ligand/substrate recognition specificity of an antibody/enzyme/aptamer has given rise to numerous biomedical applications like sensing glucose [21–23], urea [24], polyphenols [25], and H₂O₂ [26]. Similar conjugates have been useful in detecting toxins like ricin [27], target DNA [28], and cocaine [29] or in monitoring enzyme mediated phosphorylation [30] and release of doxorubicin into cancer cells [31]. Their utility in tracking activity of AChE *in vivo* under diseased conditions [32] or monitoring protein unfolding of human serum albumin [33] has been demonstrated. Such hybrid devices are predicted to find applications in areas ranging from energy harvesting and nanoscale electronics to biomedical diagnostics [34].

Over the past three decades, numerous reports of enzyme conjugated to nanoparticles/nanorods/QDs have appeared (see Table 1). However, in vast majority of such reports, the catalytic activity of enzyme in the conjugate has suffered significant loss rendering them futile. In spite of the diverse number of conjugation strategies employed, there clearly appears no universal method that can guarantee retention of whole enzyme activity in the QDEnzBio conjugate. It is likely that changes in native enzyme conformation, backbone/side-chain dynamics or substrate access to the active site in QDEnzBio might have contributed to Enzyme-nanoparticle conjugates synthesized in the past and their consequence on enzyme activity. Entries are listed in the order they appeared in literature with most recent work reported first.

	Enzyme	Nanoparticle	Conjugation strategy		Inert spacer	Effect on enzyme activity		Reference
1	Tyrosinase (from mushroom)	Glutathione-CdTe QDs	Encapsulated with Poly-(diallyldimethylammonium chloride) in a hybrid film		No	-85%	Decreases	[43]
2	Sialyltransferase (PmST1, from Pasteurella multocida)	Magnetic nanoparticles	Cysteine functionalized magnetic NP reacting wit		Yes (5 atoms)	-20%	Decreases	[44]
			protein α -thioester through native chemical ligation		Yes (23 atoms)	+165%	Increases	
					Yes (45 atoms)	+225%	Increases	
3	Cytidine monophosphate sialic acid synthetase	Magnetic nanoparticles	Cysteine functionalized magnetic NP reacting with		Yes (5 atoms)	-20%	Decreases	
			protein α -thioester through native chemical ligation		Yes (23 atoms)	-19%	Decreases	
					Yes (45 atoms)	-14%	Decreases	
4	Sialyltransferase from Neisseria gonorrhoeae (NgST)	Magnetic nanoparticles	NgST-Biotin with Streptavidin-magnetic NP		Yes (5 atoms)	-66%	Decreases	
	(membrane bound protein)				Yes (23 atoms)	-92%	Decreases	
					Yes (45 atoms)	-82%	Decreases	
5	Type II restriction endonuclease (EcoRI)	CdS QDs	Amide bond using NHS ^a and EDC ^b chemistry		No	Qualitative estimate	No change	[45]
6	Butyrylcholinesterase	3-Mercaptopropionic acid coated CdSe/ZnS QDs	Electrostatic interaction		No	-50%	Decreases	[32]
7	α-Chymotrypsin	Ni nanoparticles	Chemical reduction in aqueous solution		No	-58%	Decreases	[46]
8	Glucose oxidase	CdTe QDs	$QD-COOH + GOx-NH_2$ with EDC and NHS	5	No	13 fold lower K _m	Increases	[21]
9	CMP-sialic acid synthetase	Magnetic nanoparticles	Intein expression system and native	Random	No	-67%	Decreases	[47]
			chemical ligation	Site-	No	-23%	Decreases	
				specific				
10	Trypsin	Gold nanorods	Click chemistry (acetylene-trypsin to azide on Au nanorods)		Yes (12 atoms)	-43%	Decreases	[48]
			Amide bond (EDC chemistry)		No	-87%	Decreases	
			Electrostatic adsorption				more	
					No	-81%	Decreases	
							more	
11	α-Chymotrypsin	CdS nanoparticles	Chemical reduction in aqueous solution using TCEP ^c		No	- 50%	Decreases	[49]
12	Lipase from Thermomyces lanuginosus	Gold nanoparticles	Click chemistry (acetylene–lipase to azide- functionalized Au nanoparticles)		Yes (47 atoms)	0%	No change	[50]
13	Cytochrome P450 _{BSB}	CdS QDs	Electrostatic interaction		No	-83%	Decreases	[51]
14	RNase S	Gold nanoparticles	S-peptide (Cys) with Au NP followed by self-assembly with S-Protein		Yes (3 amino acid peptide spacer)	-99%	Decreases	[52]
15	Pepsin	Colloidal gold	Interaction of Cys–SH or Lys–NH ₂ with colloidal gold		No	-19%	Decreases	[53]
16	Aspartic protease from Aspergillus saitoi	Colloidal gold	Interaction of Cys-SH or Lys-NH ₂ with colloidal gold		No	-10%	Decreases	[54]
17	Horseradish peroxidase	Colloidal gold	Adsorbed to colloidal gold sols that were later		No	Between – 7%	Decreases	[55]
			electrodeposited onto Pt gauze/glassy carbon			and — 16%		
18	Xanthine oxidase	Colloidal gold	Ibid		No	Between — 13% and — 59%	Decreases	
19	Carbonic anhydrase	Colloidal gold	Ibid		No	-30%	Decreases	
20	Clucose oxidase	Colloidal gold	Ibid		No	Between — 20% and — 30%	Decreases	

^a N-hydroxysulfosuccinimide (NHS).
^b 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC).
^c Tris(2-carboxyethyl) phosphine hydrochloride (TCEP).

Download English Version:

https://daneshyari.com/en/article/1947582

Download Persian Version:

https://daneshyari.com/article/1947582

Daneshyari.com