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a b s t r a c t

The structural class has become one of the most important features for characterizing the overall folding
type of a protein and played important roles in many aspects of protein research. At present, it is still a
challenging problem to accurately predict protein structural class for low-similarity sequences. In this
study, an 18-dimensional integrated feature vector is proposed by fusing the information about content
and position of the predicted secondary structure elements. The consistently high accuracies of jackknife
and 10-fold cross-validation tests on different low-similarity benchmark datasets show that the pro-
posed method is reliable and stable. Comparison of our results with other methods demonstrates that
our method is an effective computational tool for protein structural class prediction, especially for low-
similarity sequences.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The first definition of protein structural class was introduced by
Levitt and Chothia in 1976 [1]. Based on their pioneering work, four
structural classes of globular proteins are usually distinguished: (1)
the all-a class, which includes proteins with only a small amount of
strands, (2) the all-b class with proteins with only a small amount of
helices, (3) the a/b class with proteins that include both helices and
strands and where the strands are mostly parallel, and (4) the aþ b
class, which includes proteins with both helices and strands and
where strands are mostly anti-parallel. The structural class has
become one of the most important features for characterizing the
overall folding type of a protein and plays important roles in many
aspects of protein research. More specifically, a knowledge of
structural class has been applied to improve the accuracy of sec-
ondary structure prediction [2], to reduce the search space of
possible conformations of the tertiary structure [3e5], and to
implement a heuristic approach to determine tertiary structure. To
date, protein structural class prediction has become a quite
meaningful topic in bioinformatics [6,7]. Traditional lab based
methods assign the structural class to a protein by manual

inspection such as X-ray crystallography or nuclear magnetic
resonance (NMR) spectroscopy, which is a time-consuming and
expensive process. Thus, with the rapid development of the geno-
mics and proteomics, it is crucially important to develop a fast and
accurate computational method to determine structural class for
the dramatically expanding newly-discovered proteins. One
important aspect to predict structural class is to properly extract
protein sequence information and then form a feature vector. In the
earlier research, features were always extracted from amino acid
(AA) sequence [4e13] such as the frequency of each AA in a given
protein. Considering that these features ignored the sequential
order information, some order features have been introduced, such
as pseudo AA composition [14], collocation of AA, function domain
composition [15], and position-specific scoring matrix (PSSM)
computed by the position-specific iterative basic local alignment
search tool (PSI-BLAST) [16]. However, these methods perform
poorly with low-similarity sequences, with accuracies between 50%
and 70% [17]. Recently, several new features based on predicted
secondary structure sequence (SSS) have been proposed to improve
the prediction accuracy with the low-similarity sequences [17e23]
such as the length of the longest a-helices and b-strands. After the
feature vector is extracted from the protein sequence, the feature
vector is subsequently used as the input to different types of ma-
chine learning algorithms, including neural network [24], support
vector machine (SVM) [25e29], fuzzy clustering [30], Bayesian
classification [31], rough sets [32] and so on. A review by Chou
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provided further details for the development of protein structural
class prediction methods [6]. Although quite encouraging results
have been achieved by many predicted secondary structure based
methods, development of high quality prediction methods, espe-
cially for low-similarity sequences continues to be a challenging
task.

In this study, an 18-dimensional integrated feature vector (IFV)
is proposed by fusing the content and position information of the
predicted secondary structure elements and then a multi-class
support vector machine (SVM) is implemented to predict protein
structural class on three different low-similarity benchmark data-
sets. In order to evaluate the proposed prediction method objec-
tively, the jackknife cross-validation test and the 10-fold cross-
validation test (10-CV) are implemented. Thanks to the compre-
hensive features which could represent enough protein sequence
information to grasp the relationship between protein sequence
and structural class, the experimental results demonstrate that our
method is an effective computational tool for protein structural
classes prediction. Moreover, the results suggest that further min-
ing the integrated information about content and position based on
the predicted secondary structure sequence is an effective way to
improve prediction accuracy.

2. Materials and methods

2.1. Datasets

In order to give a comprehensive experimental comparison of
different prediction algorithms, three widely-used benchmark
datasets with low sequence identity were employed in our study.
The ASTRAL dataset (including 7 classes) selected had sequence
similarity lower than 20% and contains 6424 sequences [21].
Among the 7 classes, four major classes (all-a, all-b, a/b and a þ b)
were selected in this study. The dataset with 5626 sequences was
randomly divided into two equal subsets, one was used as the
training set (ASTRALtraining) and the other was used as the test set
(ASTRALtest) [18]. The dataset 25PDB [10] that comprised 1673
proteins of about 25% sequence similarity. The final dataset, named
640 [18,22] comprised 640 proteins of about 25% sequence simi-
larity. The details about the four datasets are shown in Table 1.

2.2. Feature vector

It was known that every residue in a protein sequence was
predicted into one of three secondary structural elements H (helix),
E (strand) and C (coil) using PSIPRED. These secondary structural
elements defined the predicted secondary structure sequence (SSS)
of a given protein. Based on the SSS, the following 27 features were
given to identify protein structural class, including 11 reused fea-
tures in the previous studies and 16 novel features. Below, we gave
the concrete details and investigated how these features contrib-
uted to the prediction results.

1. P(H) and P(E) [17] based on the SSS which expressed the fraction
of H and E can reflect the contents of H and E in the SSS. They
were formulated as:

PðHÞ ¼ NH=N; PðEÞ ¼ NE=N

where NH and NE were the number of H, E in the SSS. The length of
the SSS was denoted by N.

2. CMVH, CMVE and CMVC [17] based on the SSS have proved that
they were useful for protein structural class prediction since
they reflect the spatial arrangements of H, E and C in the SSS.
They were formulated as:

CMVH ¼
XNH

j¼1

PHj

,
ðNðN � 1ÞÞ

CMVE ¼
XNE

j¼1

PEj

,
ðNðN � 1ÞÞ

CMVC ¼
XNC

j¼1

PCj

,
ðNðN � 1ÞÞ

where NC was the number of C in the SSS, PHj, PEj and PCj were the
jth position of H, E and C in the SSS.

3. As the concept of protein structural class was given according to
globular protein, the lengths of the a-helices and b-strands can
affect the spatial structure of protein. The normalized lengths of
the longest a-helices and b-strands in the SSS [23] (denoted by
MaxsegH/N and MaxsegE/N) were significant to improve the
prediction accuracy.

4. If two segments of E are separated by segments of H, these two
segments of E would tend to form parallel b-sheets. Otherwise,
they would tend to form anti-parallel b-sheets. Take sequence
EEEEECCHHHHHHCEEEECCCCHHHEEEECCCCEEEE as an
example (Fig. 1), segment 1 and segment 2, as well as segment 2
and segment 3, are supposed to form parallel b-sheets, and
segment 3 and segment 4 are supposed to form anti-parallel b-
sheets. Consider that the b-strands in a/b proteins were usually
composed of parallel b-sheets, while in a þ b proteins the b-
strands were usually composed of anti-parallel b-sheets, the
number of b-strands (segments of E) that form parallel b-sheets
and the number of b-strands that form anti-parallel b-sheets
were important to identify a/b and a þ b classes. Here the
normalized parallel and anti-parallel b-sheets (PnE/N and APnE/
N) [20] were used in this study.

5. The normalized maximum distances between the adjacent
segments E and H as well as the adjacent segments H and E
(MaxdEH/N and MaxdHE/N) were used in this study.

The above 11 features were used due to their prior successful
application in protein structural class prediction. Below, we give 16
novel features to improve the prediction accuracy, and hope that

Table 1
The compositions of the datasets employed in our study.

Dataset All-a All-b a/b a þ b Total

ASTRALtraining 640 662 748 763 2813
ASTRALtest 640 662 747 764 2813
25PDB 443 443 346 441 1673
640 138 154 177 171 640

EEEEECCHHHHHHCEEEECCCCHHHEEEECCCCEEEE

Parallel-sheet Parallel sheet

Anti- parallel sheet

1 2 3 4

Fig. 1. The representation of E segments composing parallel b-sheets or anti-parallel b-
sheets directly from the predicted secondary structural sequences.
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