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ABSTRACT Epithelial tissue, in which cells adhere tightly to each other and to the underlying substrate, is one of the four major
tissue types in adult organisms. In embryos, epithelial sheets serve as versatile substrates during the formation of developing
organs. Some aspects of epithelial morphogenesis can be adequately described using vertex models, in which the two-dimen-
sional arrangement of epithelial cells is approximated by a polygonal lattice with an energy that has contributions reflecting the
properties of individual cells and their interactions. Previous studies with such models have largely focused on dynamics
confined to two spatial dimensions and analyzed them numerically. We show how these models can be extended to account
for three-dimensional deformations and studied analytically. Starting from the extended model, we derive a continuum plate
description of cell sheets, in which the effective tissue properties, such as bending rigidity, are related explicitly to the parameters
of the vertex model. To derive the continuum plate model, we duly take into account a microscopic shift between the two sub-
lattices of the hexagonal network, which has been ignored in previous work. As an application of the continuum model, we
analyze tissue buckling by a line tension applied along a circular contour, a simplified set-up relevant to several situations in
the developmental contexts. The buckling thresholds predicted by the continuum description are in good agreement with the
results of stability calculations based on the vertex model. Our results establish a direct connection between discrete and con-
tinuum descriptions of cell sheets and can be used to probe a wide range of morphogenetic processes in epithelial tissues.

INTRODUCTION

The emergence of epithelial tissues, in which polarized cells
adhering to each other and to the extracellular matrix are
arranged in continuous sheets, was one of the key steps in
the evolution of multicellular animals. In adult organisms,
epithelia line the internal surfaces of organs, maintaining
their integrity and mediating interactions between different
compartments. During embryonic development, epithelia
serve as the starting point in the morphogenesis of tissues
and organs (1). Epithelial morphogenesis can be accompa-
nied by changes in cell numbers, because of cell division
and death. At the same time, early steps in a number of
important and well-studied morphogenetic events, including
early stages of gastrulation (2), happen at constant cell
numbers and do not involve changes in cell connectivity.
This is the class of processes considered in this article, in
which we aim to develop a coarse-grained description of
three-dimensional (3D) tissue deformations, starting from
cell-level description of an epithelium.

Recent studies of epithelial morphogenesis (3–7) provide
highly resolved kinematic descriptions that set the stage for
the development and analysis of mathematical models that
can explain and predict the observed cell and tissue deforma-

tions. Some of the simplest proposed mathematical descrip-
tions are the so-called vertex models, see (3,8–14), in which
the degrees of freedom are the coordinates of the vertices of
cells, modeled as planar polygons. The energy of such a
model epithelium is evaluated from contributions of terms
that account for properties of individual cells, like the pref-
erence for a target area value and their tendency to minimize
perimeter length because of cortical tension. It also includes
cell pairwise interactions, modeled as terms depending on
the length of cell-cell edges, as in e.g., (3). Of course, tissue
morphogenesis is quite varied, and a number of phenomena,
such as cell motion, have been described by models different
from vertex models, see (15) for a review. Vertex models
have been used to explain the statistics of cell shapes and
compartment boundaries in developing epithelia and provide
a clear connection between experimental data and simple
physical theories (3,12,16,17). In this study, we use the exist-
ing models as a starting point for describing out-of-plane de-
formations of epithelial sheets.

Our results can be summarized as follows. First, we show
that a 3D extension of vertexmodels requires some care in the
definition of cell area,which is straightforwardwhen cells are
planar, butmust be redefinedwhenvertices canmove in three
dimensions. To properly describe 3D deformations, we also
introduce a cell-based description of bending stresses. Sec-
ond,we use a homogenization approach to derive an effective
continuum description of an epithelium, valid on length
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scales larger than a single cell. We resolve the difficulties
pointed out in previous studies by properly taking into ac-
count the non-Bravais character of the hexagonal lattice.
Motivated by a number of experimental studies, e.g., (17),
we use the homogenized model to describe epithelial buck-
ling induced by heterogeneities of cell properties. Linear sta-
bility analysis of the homogenized problem is in quantitative
agreement with the results of direct bifurcation analyses of
the extended vertexmodel that resolves individual cells, sug-
gesting that our approach can describe a wide range of phe-
nomena in developing epithelia.

MATERIALS AND METHODS

The nonplanar vertex model

Originally developed to study foams (18), vertex-based geometrical models

have been employed to describe cell sheets since the early work of Honda

(8,9). In this approach (3,4,11–13,16), interfaces between cells are defined

as straight segments and each cell assumes a polygonal shape. Cell

dynamics is described in a simplified way in terms of the motion of the

polygon vertices.

Based on these previous works, we introduce a vertex model to describe

nonplanar configurations of epithelial cell sheets. We consider a smooth

surface endowed with a mesh, as described schematically in Fig. 1. More

precisely, the lattice is specified by the positions xv of its vertices, where

v is a vertex index. The length Le of an edge labeled by e is

Le ¼
��xv2ðeÞ � xv1ðeÞ

��, where v1ðeÞ and v2ðeÞ denote the indices of the

vertices at the endpoints of the edge e. The perimeter Pf of a face f is simply

the sum of the lengths of its edges e, Pf ¼
P

e˛f Le.
Next, the energy of a nonplanar configuration of cells is defined by the

following:
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The first and third term run over all faces f, the second term over all edges

e, and the last term runs over interior edges e0, i.e., edges belonging to

two adjacent faces f1ðe0Þ and f2ðe0Þ. The quantities G, H, and B are elas-

ticity parameters. The first term (area elasticity) penalizes any deviation

from the natural area A0 ¼ 1. For simplicity, we work in a set of units

such that both the target area A0 and the corresponding modulus have

the value 1. The second term captures the adhesion energy between

cells, when G<0. The coefficient G has units of energy per unit length,

or force. The third term represents cortical tension (perimeter elasticity).

The last term is a bending term to which we will return below. A simpler

description is often used with H ¼ 0 and G>0, which then represents an

effective line tension. In the following, we provide analytical results for

the general case Gs0;Hs0 and focus on the case H ¼ 0 in our

simulations.

For planar configurations of the vertices, the bending term vanishes

and the energy defined by Eq. 1 coincides with the classical, planar

vertex model (3,13). For nonplanar configurations, the area Af and the

unit normal Nf to a face f appearing in Eq. 1 can be defined in different

ways (19) that are all equivalent in the continuous limit. We use the

following definitions, which differ slightly from those used in (17) and

are more convenient. Let n be the number of vertices of the face f (n ¼ 6

for a hexagonal mesh), and ðv1ðf Þ;.; vnðf ÞÞ be the list of vertices ordered
in the counter-clockwise direction, as in Fig. 1. We first define the vector

area Af of the face f by

Af ¼ 1

2

�
xv1ðf Þ � xv2ðf Þ þ xv2ðf Þ � xv3ðf Þ þ/

þ xvnðf Þ � xv1ðf Þ
�
;

(2)

this quantity being invariant under rigid-body translations of the lattice.

Next, we define the scalar area Af and the unit normal Nf by

Af ¼ ��Af

��; Nf ¼ Af

Af

: (3)

Observing that the flux of a constant vector field u through the face f is ex-

pressed as Af ,u, we can interpret these definitions geometrically: Nf ¼ u is

the unit vector producing the maximum flux across the face, and Af is the

maximal value of the flux.

Once the area of a face is defined, the energy of a nonplanar configura-

tion of vertices can be computed. The usual first three terms on the right-

hand-side of Eq. 1 penalize bending deformations only weakly, see

Results. They produce a bending modulus for the epithelial sheet that is

entirely determined by the two-dimensional (2D) biophysical parameters

ðA0 ¼ 1;G;HÞ and that moreover depends on the somewhat arbitrary defi-

nition of the discrete area Af . Therefore, to produce a better defined

model, adaptable to diverse biological contexts, we have added the last

term in the right-hand-side of Eq. 1. It is a discrete bending energy: the

dot product is the cosine of the angle between the normals to adjacent cells

and so, for small deflections, the parenthesis grows as one half of the

square of this angle. This term tends to keep normals of adjacent cells

aligned, much like spins in the classical Heisenberg model of ferromagne-

tism (20). This bending energy has been used in previous work to model

elastic shells using triangulated surfaces (21,22), and it has been shown

to be equivalent to the usual bending energy in the continuous limit

(23). We will show in the following that a suitable choice of B allows

one to adjust the vertex model rigidity to match that of the tissue under

consideration.

Contractile contour

An additional contractile contour in the epithelium is implemented in the

vertex model through the additional energy term,

EG ¼ G
X
e˛C

Le: (4)

The geometry of the lattice is defined by two integers P1 and P2 with

0<P1<P2, see Fig. 2 A: the diameter of the contour C is ð2 P1 þ 1Þ cells,
and the diameter of the entire lattice is ð2 P2 þ 1Þ cells. The number of cells

inside the contractile contour C is n1 ¼ 1þ 3 P1ðP1 þ 1Þ, and the total

number of cells is n2 ¼ 1þ 3 P2ðP2 þ 1Þ.

A B

FIGURE 1 The 3D vertex model. (A) Schematic drawing of the hexago-

nal vertex model, showing the vertices, edges, and cell faces in reference

configuration. (B) Deformation of the reference regular hexagonal configu-

ration into a nonplanar configuration, and unit outward normal vectors.
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