

Available online at www.sciencedirect.com

ELECTROCHIMICA

Electrochimica Acta 52 (2007) 6686-6691

www.elsevier.com/locate/electacta

Electrocatalytic reduction of 1,2-diiodoethane by anions of supramolecular complex of $(\beta$ -CD)₂/C₆₀ in DMF solution

Daoli Ye, Yi Zhang, Xiang Gao*

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China

Received 27 November 2006; received in revised form 23 April 2007; accepted 23 April 2007 Available online 29 April 2007

Abstract

The homogeneous electrocatalytic reduction of 1,2-diiodoethane by anions of the supramolecular complex of $(\beta$ -CD)₂/C₆₀ in DMF solution is reported. The results show that the trianion of $(\beta$ -CD)₂/C₆₀ exhibits electrocatalytic behavior towards the reduction of 1,2-diiodoethane, whereas the dianion is unable to reduce the diiodoethane. The second-order catalytic rate constant in DMF solution was determined to be $3.1 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ by analysis of voltammetric responses under pseudo-first-order conditions with respect to $(\beta$ -CD)₂/C₆₀. The results suggest that the host β -cyclodextrin molecules have little effect on the electrocatalytic ability of the encapsulated C₆₀ toward organic halides. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Cyclodextrins; Electrocatalysis; Fullerenes; Organic halides; Supramolecular inclusion complex

1. Introduction

Electrocatalytic reduction of organic halides (RX) has received great attention for the last few decades [1–6], and is one of the most important topics in organic electrochemistry [7–9] because of the important roles it plays in synthetic [10,11] and environmental [12,13] applications, especially in considering that halogenated organic compounds belong to a class of compounds known as persistent organic pollutants, which are slow to biodegrade in nature.

 C_{60} has displayed a rich electrochemistry due to its unique dimensional and electronic structures [14–16]. It has been shown that C_{60} possesses a strong electron-accepting ability [14], and the anions of C_{60} are readily generated and stable due to the large spacing of the formal potentials of each individual redox process [14]. Previous studies on C_{60} anions have shown that they are electron-rich species, and in addition to their reactivity towards electrophiles [17–20], they are also good electron-transfer mediators. Both the dianion and trianion of C_{60} in solution, as well as the monoanion and dianion at C_{60} film-modified electrodes, have

0013-4686/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.electacta.2007.04.091 displayed electrocatalytic reductive ability towards halogenated organic compounds [21–24].

The study of the supramolecular inclusion complex of cyclodextrin (CD) and C₆₀ has drawn a lot of attention recently [25-34], not only because the formation of the complex can increase the solubility of C₆₀ in aqueous solution for possible applications in biology and medicinal chemistry [35,36], but also because the complex has displayed some interesting properties such as dinitrogen fixation [37] and reduction of C=O, C=C and N-N⁺ bonds under mild conditions [38]. However, previous studies on the supramolecular inclusion complexes of cyclodextrin and C_{60} have been focused on the use of γ cyclodextrin as the host molecule [25-32], whereas only few papers appeared involving the use of β - and α -cyclodextrin to date [33,34], probably due to the size compatibility between the cyclodextrin (γ -CD, 0.84 nm; β -CD, 0.66 nm and α -CD, (0.52 nm) [39] and C₆₀ (1 nm) [40]. The investigation of watersoluble supramolecular inclusion complexes of C₆₀ with other cyclodextrins such as β -cyclodextrin is of importance since it helps to gain a better understanding on the cyclodextrin effect on the encapsulated C₆₀. Due to the difficulty of obtaining inclusion complexes of C_{60} with parent β -cyclodextrin, studies on such complexes have been involving the use of β -cyclodextrin derivatives [41–46], which are, however, still different from the

^{*} Corresponding author. Tel.: +86 43185262946; fax: +86 43185262946. *E-mail address:* xgao@ciac.jl.cn (X. Gao).

complex of C_{60} with parent β -cyclodextrin. Stimulated by previous report on the stabilization of C_{60} monoanion in aqueous solution by means of inclusion with γ -cyclodextrin [28], we have recently developed a method of preparing inclusion complexes as well as self-assembled monolayers (SAMs) of cyclodextrin and C_{60} using anionic C_{60} [34,47], where complexes of β - and even α -cyclodextrin with C_{60} have been obtained.

Herein, we report the first homogeneous electrocatalytic reduction of 1,2-diiodoethane by supramolecular inclusion complex of β -cyclodextrin and C₆₀. The results show that the trianion of the inclusion complex exhibits electrocatalytic reductive ability towards 1,2-diiodoethane similar to C₆₀ anions, indicating that the effect of host β -cyclodextrin molecule on the electrocatalytic reductive ability of the encapsulated C₆₀ is limited.

2. Experimental

2.1. Chemicals

99.5% C₆₀ was purchased from SES, Houston, USA, and used as received. β -Cyclodextrin was purchased from Tokyo Chemical Industry Co. Ltd., Japan. 1,2-Diiodoethane was obtained from Sigma–Aldrich, USA. Tetra-*n*-butylammonium perchlorate (TBAP), purchased from Fluka, was recrystallized from absolute ethanol and dried in vacuum at 40 °C prior to use. All other reagents were of analytical reagent grade, purchased from the Beijing Chemical Works, China, and used without purification. Deionized water was triply distilled from an all-quartz still. High-purity nitrogen was purchased from Juyang Gas Co., Changchun, China. DMF was distilled over MgSO₄ under vacuum at 25 °C. Experiments were carried out at 25 ± 1 °C in the dark in order to avoid decomposition of 1,2-diiodoethane.

2.2. Instrumentation

All electrochemical measurements were performed with a CHI 620B electrochemical workstation (CH Instruments Inc., USA). A conventional three-electrode cell consisted of a glassy carbon working electrode, a platinum counter electrode and a saturated calomel reference electrode (SCE). UV–vis spectra were recorded with a Varian Cary 500 Scan UV–vis–NIR spectrophotometer using a 1 cm path length quartz cuvette.

2.3. Preparation of supramolecular inclusion complex of β -cyclodextrin and C₆₀

The supramolecular inclusion complex of β -cyclodextrin and C₆₀ was prepared according to a previously reported method [34]. Briefly, 20 mg of C₆₀ (0.028 mmol) was added to 1-methylnaphthalene radical anion (0.28 mmol), which was prepared by reduction of 1-methylnaphthalene with sodium after vigorous stirring under argon in distilled DMF for 3 h at ambient temperature. β -CD (0.14 mmol) was then added to this solution and stirred for 3 h. After that, iodine (0.14 mmol) was added to oxidize the anions back to neutral form. The solvent was then removed under vacuum and a yellow-brown crude product was obtained. The crude product was washed with methanol to remove iodine and iodide, and then dissolved in water to remove the uncomplexed C_{60} . The filtrate was dried at room temperature, a yellow-brown solid product consisting of a mixture of $(\beta$ -CD)₂/C₆₀ and unreacted β -CD was obtained, and was then directly used for electrochemical measurement. The concentration of $(\beta$ -CD)₂/C₆₀ used in the electrochemical experiments was determined spectroscopically by using the absorption coefficient $\varepsilon = 51,900$ at 330 nm for C₆₀ [31].

3. Results and discussion

3.1. UV–vis spectroscopy and electrochemistry of $(\beta$ -CD)₂/C₆₀

Fig. 1 shows the UV-vis spectrum of the $(\beta$ -CD)₂/C₆₀ supramolecular inclusion complex in aqueous solution, which displays absorption bands at 222, 268 and 334 nm. The absorption bands are in good agreement with those of C_{60} (see Fig. 1a), indicating that a water-soluble supramolecular inclusion complex of β -CD and C₆₀ is obtained. Notably, the absorption bands at 268 and 334 nm for the $(\beta$ -CD)₂/C₆₀ inclusion complex are broader than those of C_{60} and $(\gamma$ -CD)₂/C₆₀ [31], indicating the formation of aggregates for the complex in aqueous solution as observed for the highly water-soluble (2:1) β -cyclodextrin-fullerene conjugates [44,45]. A singlet resonance at 142.1 ppm corresponding to the carbon atoms of C_{60} is observed for the ¹³C NMR of the complex in aqueous solution; the same resonance was also observed for γ -cyclodextrin-bicapped C₆₀ [26,31,34], consistent with formation of a water-soluble inclusion complex of β -CD and C₆₀. For MALDI MS measurement, ions at m/z = 3013, 3029, 1878and 1894 are observed and assigned to $[\beta$ -CD/C₆₀ (2:1) + Na]⁺, $[\beta$ -CD/C₆₀ (2:1) + K]⁺, $[\beta$ -CD/C₆₀ (1:1) + Na]⁺ and $[\beta$ -CD/C₆₀ (1:1) + K⁺, respectively. The results thus confirm the formation of the water-soluble supramolecular inclusion complex of β-CD and C_{60} . Since it has been reported that the water-soluble supramolecular complex of γ -CD and C₆₀ is formed mainly with

Fig. 1. UV–vis spectra of (a) C_{60} in hexane and (b) $(\beta$ -CD)₂/ C_{60} supramolecular inclusion complex in aqueous solution.

Download English Version:

https://daneshyari.com/en/article/195755

Download Persian Version:

https://daneshyari.com/article/195755

Daneshyari.com