Available online at www.sciencedirect.com Electrochimica Acta 52 (2006) 1058–1063 www.elsevier.com/locate/electacta # Highly dispersed hydrous ruthenium oxide in poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) for supercapacitor electrode Li-Ming Huang a, Hong-Ze Lin a, Ten-Chin Wen a,*, A. Gopalan b ^a Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan ^b Department of Industrial Chemistry, Alagappa University, Karaikudi, India Received 24 April 2006; received in revised form 23 June 2006; accepted 30 June 2006 Available online 14 August 2006 #### **Abstract** Hydrous RuO_2 particles were electrochemically loaded into poly(3,4-ethylenedioxythiophene) doped poly(styrene sulfonic acid), PEDOT-PSS, matrix by employing various potential cycles in cyclic voltammetry and to fabricate the PEDOT-PSS- $RuO_2 \cdot xH_2O$ electrode. The amount of hydrous RuO_2 particles loaded into the PEDOT-PSS matrix was easily controlled by varying the number of potential cycles. Scanning electron microscopy photographs reveal a uniform dispersion of hydrous RuO_2 particles in the porous structure of PEDOT-PSS matrix. Raman spectrum confirms the incorporation of hydrous RuO_2 into PEDOT-PSS matrix. Chronopotentiometry and cyclic voltammetry were employed in 0.5 M H_2SO_4 to evaluate the capacitor properties. Specific capacitance values were determined by chronoamperometry. An increasing trend in specific capacitance with loaded amount of hydrous RuO_2 particles in PEDOT-PSS was noticed. A maximum specific capacitance of 653 F/g was achieved. Keywords: PEDOT-PSS; Hydrous ruthenium oxide; Electrochemical capacitor; Specific capacitance; Composite electrodes #### 1. Introduction Growing demands for the generation of power sources with transient high-power density have stimulated great interest in electrochemical capacitors in recent years [1–3]. An electrochemical capacitor of large specific capacitance (supercapacitor) is formed when an electrode material with a large specific surface area is combined with a material that can be reversibly oxidized or reduced over a wide potential range. For an example, the oxides of multivalent metals such as ruthenium and iridium exhibit large faradic pseudocapacitance [4–6]. Among the various transition metal oxide materials that have been investigated over the years, hydrous RuO₂ exhibits prominent properties as a pseudocapacitor material [7,8]. It is well known that hydrous RuO₂ is an excellent material with a remarkable high specific capacitance value ranging from 720 to 760 F/g (for single electrode system) [9]. Though RuO₂ possess advantage in terms of operations over a wide potential range over reversible redox reactions to have high specific capacitance, the expense of RuO₂ deters its advantages. Therefore, it is desirable to develop thin film RuO2 electrodes for minimizing the cost of using as capacitors. Thin films of RuO₂ have been prepared by using various techniques, including reactive sputtering [10], organometallic chemical vapor deposition [11], sol-gel [12], spray pyrolysis [13], etc. However, the cost effectiveness and case of synthesis are the important factors in the successful commercialization of supercapacitors. For these reasons, conducting polymers such as polyaniline [14], polypyrrole [15] and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid), PEDOT-PSS [16] are promising matrix materials for embedding metal and metal oxide particles for applications in electronic devices. Niu et al. [17] reported the effect of Pt particles on the electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation. Bensebaaa et al. [18] reported the microwave synthesis of polypyrrole-embedded Pt-Ru catalyst for direct methanol fuel cell. They observed the average particle size of Pt-Ru as around 2.8 nm. Besides that, Ghosh and Inganas [19] reported the use of conducting polymer ^{*} Corresponding author. Tel.: +886 6 2385487; fax: +886 6 2344496. E-mail address: tcwen@mail.ncku.edu.tw (T.-C. Wen). hydrogels as 3D electrodes for application in supercapacitors. They employed PEDOT-PSS as matrix and to form ionically crosslinked conducting networks by treating with MgSO₄. Also, polypyrrole was electrochemically loaded into the PEDOT-PSS matrix to improve the mechanical strength. This hydrogel composite electrode exhibits high effective surface area and capacitance. In this study, hydrous RuO₂ particles were electrochemically loaded into the matrix of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrene sulfonic acid), PEDOT-PSS matrix. PEDOT-PSS was selected as a matrix for loading RuO₂·xH₂O particles due to the following reasons: (1) PEDOT-PSS has a good compatibility with inorganic materials, good film forming properties, high electrochemical stability and high conductivity [20]; (2) colloidal particles of PEDOT-PSS are negatively charged and expected to serve as a matrix for loading particles of RuO₂ particles through steric and electrostatic stabilization mechanisms; (3) PEDOT-PSS can form three-dimensional reaction zones when RuO₂·xH₂O particles are loaded into it can have high active surface area. In this study, the capacitance of PEDOT-PSS-RuO $_2 \cdot xH_2O$ composite was followed for various amount of loading of RuO $_2 \cdot xH_2O$ particles in PEDOT-PSS matrix. The change in the morphology of PEDOT-PSS-RuO $_2 \cdot xH_2O$ composites for the various loading of RuO $_2 \cdot xH_2O$ particles was followed by scanning electron microscopy (SEM). Electrochemical performance characteristics of the composite electrodes have been evaluated using cyclic voltammetry and chronopotentiometry. #### 2. Experimental PEDOT-PSS (Alfa, 1.34 wt%) matrix electrode was prepared by spin coating (2000 rpm for 1 min) on indium-tin oxide (ITO) substrate. A thin film of PEDOT-PSS was formed over a cleaned indium tin oxide (ITO) electrode (1.0 cm \times 1.0 cm). Before each experiment, ITO coated glass was cleaned in an ultrasonic bath using detergent, double distilled water, and isopropanol, then dried with a dry nitrogen flow and followed by UV-O₃ treatments for 20 min. Cyclic voltammetry was employed to incorporate $RuO_2 \cdot xH_2O$ deposits into PEDOT-PSS matrix by cycling the potential between 0.0 and 1.0 V for 240 cycles with a scan rate of 50 mV/s. A plating solution consisting 5 mM $RuCl_3 \cdot xH_2O$, 0.01 M HC1 and 0.1 M KC1 (pH 1.96) was used. After the deposition of $RuO_2 \cdot xH_2O$ particles into PEDOT-PSS film, the electrode was rinsed with double distilled water for 5 min then dried at 150 °C for 30 min. The amount of $RuO_2 \cdot xH_2O$ particles loaded into PEDOT-PSS matrix was calculated from the following equation: $$m = \frac{Q_{\rm dep} \times M}{F \times Z}$$ where amount (m), amount of $RuO_2 \cdot xH_2O$ incorporated into PEDOT-PSS was calculated using the deposited charge (Q_{dep}) . M is the molecular weight of RuO_2 , F the Faradic constant and Z is the number of electron involved in the process. Electrochemical formation of $RuO_2 \cdot xH_2O$ from aqueous solu- tion containing RuCl₃ involves a transfer of one-electron as; Ru(III) + $2H_2O \leftrightarrow RuO_2 + 4H^+ + e$. Electrochemical characterization was performed with PGSTAT20 electrochemical analyzer, AUTOLAB Electrochemical Instrument (The Netherlands). All experiments were carried out in a three-component cell. Indium tin oxide coated glass plate (1 cm² area), Ag/AgCl (in 3 M KC1) and platinum wire were used as working, reference and counter electrodes, respectively. A Luggin capillary, whose tip was set at a distance of 1–2 mm from the surface of the working electrode, was used to minimize errors due to *iR* drop in the electrolytes. Surface morphology of PEDOT-PSS-RuO₂·xH₂O composite was observed by a scanning electron microscopy (SEM) (Philips X1–40 FEG). Raman spectra were taken in the quasi-backscattering geometry using 100 mW of the 514.5 nm line of an Ar ion laser, focused to a line of 5 mm \times 100 μ m as the excitation source (spectral resolution and the accuracy in the Raman shift in the range \sim 2 cm⁻¹). #### 3. Results and discussion $RuO_2 \cdot xH_2O$ particles were electrodeposited into PEDOT-PSS matrix from a solution of 5 mM $RuCl_3 \cdot xH_2O$ in 0.01 M HC1 and 0.1 M KC1 (pH \sim 1.96) by cyclic voltammetry [21]. Conditions for the electrodeposition of $RuO_2 \cdot xH_2O$ particles were selected after considering several aspects. Precipitation of ruthenium hydroxide occurred from $RuCl_3$ Above pH values of 4. Also, when the HC1 concentration was beyond 0.01 M, deposition of $RuO_2 \cdot xH_2O$ was not noticed. Hence, several trial experiments were carried out to optimize the conditions for incorporation of $RuO_2 \cdot xH_2O$. Fig. 1 presents the cyclic voltammograms (CVs) recorded during the incorporation of hydrous RuO₂·xH₂O into PEDOT-PSS film. The scan rate for the loading of $RuO_2 \cdot xH_2O$ particles was selected based on few considerations. We presume that scan rate may have influence on the process that is involved in RuO₂·xH₂O deposition. PEDOT-PSS is a porous matrix. Hence, diffusion of ruthenium metal ions into the porous matrix and the period of staying of the ruthenium ions at the pores of PEDOT-PSS are expected to be the determining factors for the deposition of $RuO_2 \cdot xH_2O$ particles. These factors could be controlled through scan rate. A scan rate of 50 mV/s was selected for the deposition of RuO₂·xH₂O particles after several trials with different scan rates. In the CVs, one can observe current maximum at two potentials, 0.45 V (peak A) and 1.0 V (peak B) at various cycles. On the cathodic scan of potentials, peaks were observed at ca. 0.78 V (peal B') and 0.2 V (peak A'). It can be seen that the voltammetric current at ca. 0.45 V (peak A) showed a steady increase with increasing the growth numbers. The results are in accordance with the formation of $RuO_2 \cdot xH_2O$. Peak A' is attributed to the reduction of Ru(III) species to Ru(0), and the metallic Ru is thus expected to embed into the PEDOT-PSS matrix [21]. The deposited Ru species, which may be Ru(0) and low oxy-chloro-ruthenium species, are subsequently oxidized to hydrous oxide, RuO2·xH2O at more positive potentials (peak B) [i.e., hydroxyl/Ru(VI) species]. Ru metallic state may be expected to be stabilized by the sulfonate groups in PEDOT- ### Download English Version: ## https://daneshyari.com/en/article/196129 Download Persian Version: https://daneshyari.com/article/196129 Daneshyari.com