Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cellsig

Dual positive and negative regulation of GPCR signaling by GTP hydrolysis

Benjamin Smith^{a,1}, Claire Hill^{b,1,2}, Emma L. Godfrey^{c,1}, David Rand^d, Hugo van den Berg^d, Steven Thornton^c, Matthew Hodgkin^b, John Davey^b, Graham Ladds^{c,*}

^a Molecular Organization and Assembly of Cells Centre, University of Warwick Coventry CV4 7AL, UK

^b Department of Biological Sciences, University of Warwick Coventry CV4 7AL, UK

^c Division of Clinical Sciences, Warwick Medical School, University of Warwick Coventry CV4 7AL, UK

^d Systems Biology Centre, University of Warwick Coventry CV4 7AL, UK

ARTICLE INFO

Article history: Received 19 January 2009 Accepted 4 March 2009 Available online 12 March 2009

Keywords. GPCR RGS G protein Computational modeling Signaling

ABSTRACT

G protein-coupled receptors (GPCRs) regulate a variety of intracellular pathways through their ability to promote the binding of GTP to heterotrimeric G proteins. Regulator of G protein signaling (RGS) proteins increases the intrinsic GTPase activity of $G\alpha$ -subunits and are widely regarded as negative regulators of G protein signaling. Using yeast we demonstrate that GTP hydrolysis is not only required for desensitization, but is essential for achieving a high maximal (saturated level) response. Thus RGS-mediated GTP hydrolysis acts as both a negative (low stimulation) and positive (high stimulation) regulator of signaling. To account for this we generated a new kinetic model of the G protein cycle where $G\alpha_{GTP}$ enters an inactive GTP-bound state following effector activation. Furthermore, in vivo and in silico experimentation demonstrates that maximum signaling output first increases and then decreases with RGS concentration. This unimodal, non-monotone dependence on RGS concentration is novel. Analysis of the kinetic model has revealed a dynamic network motif that shows precisely how inclusion of the inactive GTP-bound state for the $G\alpha$ produces this unimodal relationship.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Vast numbers of cellular processes are regulated by the GTPase switch, including trans-plasma membrane signal transduction, control of cellular growth, vesicle and protein transport and cytoskeleton assembly. Increasing the number of GTP-bound G proteins enhances signaling, whereas increasing their intrinsic rate of GTP hydrolysis is believed to regulate the pathway negatively. Within signal transduction pathways, heterotrimeric G proteins (consisting of a nucleotide-binding G α -subunit plus GBy-subunits) couple cell surface-expressed receptors to intracellular effectors, in many different cell types. Active G protein-coupled receptors (GPCRs) promote nucleotide exchange on the G α -subunit, causing dissociation of the heterotrimer and subsequent effector activation [1,2]. Regulator of G protein signaling (RGS) proteins accelerate GTPase activity of the G α -subunit (by acting as GTPase activating proteins; GAPs) thereby reducing production of second messengers from the effector [3,4].

The pheromone-response pathway in yeast provides a model G protein-coupled signal transduction pathway that controls cell conjugation and division [5]. The binding of pheromones to receptors activates an effector system via the heterotrimeric G protein, to initiate intracellular changes that regulate the transcription of mating genes [6,7]. Yeast is therefore free from the complication of multiple receptors, effectors and other regulatory proteins [7]. RGS proteins were originally described in Saccharomyces cerevisiae as negative regulators of the pheromone-response pathway, where they minimize spontaneous cell activation and enable cells to recover from stimulation in the absence of conjugation [8]. In S. cerevisiae, $G\beta\gamma$ -subunits stimulate effector activation, potentially making this pathway less affected by proteins that influence nucleotide hydrolysis on the $G\alpha$ -subunit [9]. In contrast the fission yeast *Schizosaccharomyces pombe*, utilized the $G\alpha$ -subunit of a classical heterotrimeric G protein, Gpa1, as its signal propagator of the pheromone-response pathway [10–12]. Briefly S. pombe cells, during their mating cycle, grow up a pheromone gradient produced by a cell of the opposite mating type. The pheromones, (P-factor or M-factor) upon detection by mating type specific GPCRs, activates Gpa1 which propagates the signal by promoting the activation of Ras1. This leads to stimulation of a mitogen-activated protein kinase (MAPK) cascade resulting in the activation of the transcription factor Ste11 [6,9]. In addition to the transcription of pheromone-dependent genes, S. pombe also undergoes a morphological change in response to pheromone. Responding cells continue to grow from the tip of the cell and elongate towards the source of the pheromone forming a shmoo [13]. It currently remains unknown how Gpa1 activates both pathways.

Deletion of rgs1 in S. pombe increases ligand-independent signaling and reduces mating efficiency [14-16], which suggests that Rgs1 acts as a negative regulator of the pheromone-response as reported in S. cerevisiae [7]. Here we demonstrate that at high ligand concentrations, Rgs1 also plays a positive role in regulating the pheromone-response. Through

^{*} Corresponding author. Tel.: +44 2476 528361; fax: +44 2476 523701. E-mail address: Graham.Ladds@warwick.ac.uk (G. Ladds).

¹ These authors contributed equally to this work.

² Present address: Warwick HRI, The University of Warwick, Wellesbourne, Warwickshire CV35 9EF, UK,

^{0898-6568/\$ -} see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.cellsig.2009.03.004

Fig. 1. Mutating residues essential for $G\alpha$ -mediated GTP hydrolysis reduces maximal pheromone signaling independent RGS activity. Pheromone-dependent transcription of β -galactosidase expressed from the *sxa2>lacZ* reporter construct was measured in yeast strains; (A) expressing wild type Rgs1 (\blacksquare), a chromosomally expressed RGS-insensitive form of Gpa1 (Gpa1^{G2235}, \bullet) or deleted for Rgs1 (Δ Rgs1; \Box), (B) deleted for the chromosomal copy of *gpa1* (JY1285) and expressing wild type (\blacksquare), an RGS-insensitive (Gpa1^{G2235}; \bullet) or GTPase deficient (Gpa1^{Q2441}, \blacktriangle) form of Gpa1 from a plasmid, (C) deleted for the chromosomal copies of both *gpa1* and *rgs1* (JY1287) and expressing plasmid-derived copies of Gpa1 (\Box), GTPase deficient Gpa1^{Q2441}(\bigstar) and both wild type Rgs1 with wild type Gpa1 (\blacksquare), (D) containing wild type Rgs1 with a single chromosomal copy (\blacksquare) or a chromosomal copy supplemented with a plasmid copy of Gpa1, and the Rgs1 deleted strain containing a chromosomal copy (\Box) or chromosomal copy supplemented with a plasmid copy of Gpa1 (\bigcirc) GPa1 (\bigcirc) GPa1 (\bigcirc) GFa1 (\bigcirc) or Gpa1 (\bigcirc) or Gpa1 the Rgs1 deleted strain containing a chromosomal copy supplemented with a plasmid copy supplemented with a plasmid copy of Gpa1 (\bigcirc). Results are means $\pm S$.E.M. of triplicate determinations from three independent isolates.

targeted mutational analysis, we alter the GTPase activity on Gpa1 to demonstrate that GTP hydrolysis is absolutely required to achieve maximum signaling.

A mathematical model has been developed that reproduces in vivo data, and provides a novel mechanistic description of the G protein signaling pathway. Crucial to the faithful reproduction of the observed phenomena is the assumption that one $G\alpha_{GTP}$ activates only one effector molecule per round of guanosine nucleotide exchange and hydrolysis. Entry into an inactive but GTP-bound state following the activation of an effector removes the $G\alpha_{CTP}$ from the pool of molecules available for signaling, rather than allowing further effector activation by the same molecule. GTP hydrolysis, accelerated by an RGS protein, releases the $G\alpha$ from this inactive GTP-bound state and allows subsequent reactivation by ligand-bound receptors and then activation of another effector molecule. Parallel in vivo and in silico experiments reveal a nonmonotone relationship with a single maximum (i.e. unimodal) between pathway output and quantity of RGS protein. This non-monotone relationship reflects the dual positive/negative character of RGS regulation. An abstract dynamic network motif that captures the underlying structure of the more complex mathematical model is used to derive the non-monotone relationship explicitly. Finally, comparison of this motif with an alternative motif, whose structure underlies many current models of G protein signaling, shows why these current models are unable to account for non-monotone regulation by the RGS.

2. Materials and methods

2.1. Strains, reagents and general methods

The effector output from the pheromone-response pathway in *S. pombe* can be quantified using pheromone-dependent transcription of β -galactosidase expressed from the *sxa2*>*lacZ* reporter construct as

described previously [16,17]. All yeast strains (Supplementary Table S9) have been described previously [12,16] with the exception of JY1340 which was derived from JY546 but had *gpa1* replaced with *gpa1*^{G2235}. Gene replacements were confirmed by polymerase chain reaction (PCR) and Southern blot analysis. General yeast procedures were performed as described [18,19]. Oligonucleotides were synthesized by Invitrogen Ltd. (Paisley, Scotland, UK). Amplification by PCR used *Pwo* DNA polymerase (Boehringer Mannheim Biochemicals, Lewes, UK) or *KOD* HiFi DNA polymerase (Merck Chemicals Ltd., Nottingham, UK). All constructs generated by PCR were sequenced.

2.2. Assay of β -galactosidase activity

β-galactosidase assays in *S. pombe* cells were performed as described previously [16,20]. *S. pombe* cells were cultured to a density of ~5×10⁵ cells ml⁻¹ in DMM and 500 μl aliquots transferred to 2-ml Safe-Lock tubes (Eppendorf, Hamburg, Germany) containing 5 μl of Pfactor (in HPLC-grade methanol). Tubes were incubated at 29 °C for 16 h on a rotating wheel, and 50 μl transferred to 750 μl Z-buffer containing 2.25 mM *o*-nitrophenyl-β-D-galactopyranoside (ONPG). Reactions were stopped after 90 min by adding 200 μl of 2 M Na₂CO₃ and βgalactosidase activity calculated as optical density at 420 nm (OD₄₂₀) per 10⁶ cells (determined using the Z2 Coulter Channelyzer) (Beckman Coulter, Luton, UK).

2.3. Plasmids

pREP3× contains the *LEU2* gene and pREP4× contains the *ura4* gene, both of which were controlled by thiamine-repressible *nmt1* promoter [21]. The production of all Gpa1 constructs with the exception of Gpa1^{Q244L}, have been described [12]. Gpa1^{Q244L} was generated by bipartite PCR [22] on the wild type constructs. Generation of pREP3×-Rgs1 and

Download English Version:

https://daneshyari.com/en/article/1963927

Download Persian Version:

https://daneshyari.com/article/1963927

Daneshyari.com