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Abstract

Solutions of the Stefan problem in the 2D space considering a moving boundary of a solid deposit growing under mass transfer control on
either plane plate or spherical solid substrates are reported. In the former case, the displacement of the growth front at the plane plate occurs
perpendicularly to the substrate, whereas for the latter it shifts radially. For both substrates, in the absence of convection and surface roughness
effects, the phase growth kinetics is determined by diffusion and advection, the latter being due to the linear displacement of the growth front
with time. For both geometric arrangements the theory predicts two limiting kinetic situations, namely a diffusion control when the time and/or
the radius of the substrate approach zero, and an advection control for the reverse conditions. For the spherical substrate, when its radius tends to
infinity, the kinetics of the process approaches that found at the plane plate substrate. Theoretical potentiostatic current density transients are tested
utilising growth pattern data for the formation of 2D silver dense branching electrodeposits on a plane plate cathode in a quasi-2D cell, and silver

electrodeposits on spherical cathodes employing a high viscosity plating solutions.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Stefan problem; Diffusion—advection; Plane plate and spherical electrode; Silver electrodeposition

1. Introduction

Most rate equations that have been derived solving the
convective-diffusion differential equations for the growth of a
solid phase at a solid substrate have considered that the inter-
face remains at rest [1]. This implies a limitation to the extension
of those rate equations to processes in which the solid phase
growth front moves inward (forward) into the bulk of the reac-
tant supplier environment [2]. In this case, the solution of the
corresponding differential equations depends on the moving
boundary conditions [3].

Since about a century ago, solutions of moving boundary
problems have been proposed for heat transfer in iceberg dis-
placement [4—6], although their extension to mass transfer pro-
cesses, such as those involved in solid phase growth, has received
much less attention. These mass transfer problems are generi-
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cally denoted as Stefan problems, irrespective of the driving
force. They are often found in a number of processes occurring
in different areas of natural sciences and technologies.

In principle, both Fick’s and Fourier’s equations can be solved
in each phase for different situations. (i) For a fixed boundary the
transfer equations are solved for the immobile interface assum-
ing constant spatial domains for each phase. (ii) For a moving
boundary the spatial domain of each phase changes as the inter-
face front moves according to a certain law that is known a priori.
(iii) For an implicit free boundary the spatial domain changes
and the moving boundary equations are unknown. They usually
depend on the physics of each problem and have to be found in
order to solve them [7].

This paper compares two solutions of the Stefan problem in
the 2D space considering the moving boundary of solid phase
growth [case (ii)] on either a plane plate or a spherical solid under
mass transfer control. In the former case, the displacement of
the growth front occurs perpendicularly to the substrate surface,
whereas for the latter it shifts radially. For this case, when the
radius tends to infinity, the limiting solution of the mass transfer
differential equation approaches the solution for the plane plate
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substrate. Neither changes in the macroscopic roughness of the
moving boundary nor convective effects from density gradients
are considered in solving the transfer equations.

On the other hand, theoretical potentiostatic current density
transients are tested with experimental data related to the elec-
trochemical formation of silver dense branching patterns under
mass transfer control on plane plate and spherical cathodes. For
this purpose, to make the contribution of free convection negligi-
ble, in the former case a quasi-2D cell and conventional plating
solutions are utilised, whereas for the latter high viscosity plat-
ing solutions are employed. After correction for the roughness of
the electrodeposits, the agreement of theoretical and experimen-
tal data in the time range where the contribution of advection is
dominant is fairly good.

2. The solution of Fick’s equation with the Stefan
boundary condition

2.1. Plane plate substrate

Let us consider the deposition of species i on a plane plate
substrate of infinite dimensions by a diffusion process from a
fluid phase (plating solution) that occurs normally (y-direction)
to the plane plate. This process is expressed by Fick’s equation
in Cartesian coordinates
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D; and c¢; being the diffusion coefficient and the concentration
of species i (reactant) in the fluid phase and 7 is the deposition
time. The advance of the growth front occurs in the y-direction.
Eq. (1) is solved with the following boundary conditions:

a0 =cs  y=0  st)=s0) (2a)
ci[s(t),t] = 0; t>0 (2b)
st =Bt (2¢)
ann=c: y— o0 (2d)

Condition (2a) corresponds to the initially uniform reactant con-
centration in the plating solution, and s(¢) is the front coordinate
at time . The surface area of the growth front is equal to that
of the inert substrate upon which the growth of the solid phase
commences (r=0); B denotes the advance velocity of the mov-
ing boundary. Condition (2b) indicates that the concentration
of i just at the growing front is null for >0, as expected from
mass transfer-controlled kinetics. Condition (2c), usually called
the Stefan condition, indicates the instantaneous location of the
growing front.

Solving Eq. (1) with boundary conditions ((2a)—(2d)), the
explicit expression for ¢;(y, ) results in
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Fig. 1. (a—c) Concentration profiles calculated for the plate plane with Eq. (3)
plotted as ¢; vs. y — Bt at different values of B for r=0.1, 1, 10 and 100s. The

value of ¢ increases as indicated by the arrows. The following values were used in

the calculations: z;=1; D; =1.39 x 1075 cm? sl c? =4.8 x 107> molem™3.

These figures were taken from the electrodeposition of silver from aqueous
solution [9].

Eq. (3) fulfills boundary conditions (2a) and (2b). Plots of ¢;
versus y — Bt for various values of 8 and different values of ¢
are shown in Fig. 1. At constant y — ¢ the gradient of ¢; per-
pendicular to the substrate increases with 8. This effect is more
remarkable at longer 7.

Let us apply Eq. (3) to evaluate the potentiostatic current den-
sity transients, which represent the instantaneous rate of metal
electrodeposition from the plating solution on the plane plate.
The rate of this process under diffusion control is given in terms
of the cathodic current density j.(7)

Je(t) = z; FD; { 4

aci(y, I)}
ay y:ﬁt
zi, ¢; and F being the electric charge per reactant species, the
reactant concentration in the plating solution and the Faraday
constant, respectively. Then, considering the differential expres-
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