Contents lists available at ScienceDirect

Clinica Chimica Acta

journal homepage: www.elsevier.com/locate/clinchim

CrossMark

Invited critical review

Hydrogen sulfide as a potent cardiovascular protective agent

Xiao-Hua Yu^a, Li-Bao Cui^b, Kai Wu^c, Xi-Long Zheng^d, Francisco S. Cayabyab^e, Zhi-Wei Chen^{f,*}, Chao-Ke Tang^{a,**}

^a Life Science Research Center, University of South China, Hengyang, Hunan 421001, China

^b Department of Pharmacy, Central Hospital of Hengyang City, Hengyang, Hunan 421000, China

^c Department of Ophthalmology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China

^e Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

^f Department of Orthopedics, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China

ARTICLE INFO

Article history: Received 3 May 2014 Received in revised form 7 July 2014 Accepted 10 July 2014 Available online 21 July 2014

Keywords: H₂S CSE Atherosclerosis CHD Heart failure

ABSTRACT

Hydrogen sulfide (H_2S) is a well-known toxic gas with the characteristic smell of rotten eggs. It is synthesized endogenously in mammals from the sulfur-containing amino acid L-cysteine by the action of several distinct enzymes: cystathionine- γ -lyase (CSE), cystathionine- β -synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST) along with cysteine aminotransferase (CAT). In particular, CSE is considered to be the major H_2S -producing enzyme in the cardiovascular system. As the third gasotransmitter next to nitric oxide (NO) and carbon monoxide (CO), H_2S plays an important role in the regulation of vasodilation, angiogenesis, inflammation, oxidative stress and apoptosis. Growing evidence has demonstrated that this gas exerts a significant protective effect against the progression of cardiovascular diseases by a number of mechanisms such as vasorelaxation, inhibition of cardiovascular remodeling and resistance to form foam cells. The aim of this review is to provide an overview of the physiological functions of H_2S and its protection against several major cardiovascular diseases, and to explore its potential health and therapeutic benefits. A better understanding will help develop novel H_2S -based therapeutic interventions for these diseases.

© 2014 Elsevier B.V. All rights reserved.

Contents

	Introduction		
2.	$Production and metabolism of H_2S \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	79	
3. Measurement of H ₂ S in mammalian samples and its toxicity			
4.	Physiological functions of H ₂ S	80	
	4.1. Vasodilation	80	
	4.2. Angiogenesis		
	4.3. Inflammation		
	4.4. Oxidative stress		
	4.5. Apoptosis		
5.	Roles of H ₂ S in cardiovascular diseases	81	
	5.1. Atherosclerosis	81	
	5.2. CHD	82	

Abbreviations: H₂S, hydrogen sulfide; NO, nitric oxide; CO, carbon monoxide; CHD, coronary heart disease; PAH, pulmonary arterial hypertension; I/R, ischemia/reperfusion; CSE, cystathionine-γ-lyase; CBS, cystathionine-β-synthase; 3-MST, 3-mercaptopyruvate sulfurtransferase; CAT, cysteine aminotransferase; K_{ATP}, ATP-sensitive potassium; SUR1, sulfonylurea receptor 1; VSMCS, vascular smooth muscle cells; PI3K, phosphatidylinositol 3-kinase; VEGF, vascular endothelial growth factor; ERK1/2, extracellular signal-regulated kinase 1/2; NF-κB, nuclear factor-κB; HIF-1α, hypoxia-inducible factor 1α; PIP3, phosphatidylinositol-3,4,5-trisphosphate; ROS, reactive oxygen species; redox, reduction/oxidation; Nrf2, nuclear factor erythroid 2-related factor 2; JNK, c-Jun N-terminal kinase; oxLDL, oxidized low-density lipoprotein; PAG, DL-propargylglycine; Ang II, angiotensin II; HO-1, heme oxygenase-1; DATS, diallyl trisulfide.

* Corresponding author. Tel./fax: +86 734 8193468.

** Corresponding author. Tel./fax: +86 734 8281853.

E-mail addresses: 2682446780@qq.com (Z.-W. Chen), tangchaoke@qq.com (C.-K. Tang).

^d Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada

	5.3.	Heart failure	33
	5.4.	Hypertension	33
		РАН	
	5.6.	Myocardial I/R injury	34
6.	H ₂ S-ba	ased therapeutic potential for cardiovascular diseases \ldots	34
7.	Conclu	usions and future directions	34
Disc	losure		35
Ackr	nowledg	gment	35
Refe	rences		35

1. Introduction

Hydrogen sulfide (H₂S) is a colorless, flammable and water-soluble gas characterized by a peculiar smell of rotten eggs. The toxic actions of H₂S have been known for more than 300 years. H₂S has long been regarded as only an environmental hazard, but recently it is thought to be the third gaseous signaling molecule after nitric oxide (NO) and carbon monoxide (CO). Similar to NO and CO, H₂S is synthesized in many different cell types and can easily diffuse without involvement of any transporters. Thus, it is not surprising that this gas has multiple biological actions including vasodilation, pro-angiogenic effect, proand anti-inflammatory properties, resistance to oxidative stress as well as pro- and anti-apoptotic activities [1,2]. There is growing evidence that H₂S is a critical regulator of cardiovascular functions and plays a protective role in the pathogenesis and development of cardiovascular diseases, a leading cause of morbidity and mortality worldwide [3]. In the present review, we summarize the production, metabolism and physiological functions of H₂S, and explore its emerging pathogenic significance and therapeutic potential in several major cardiovascular diseases including atherosclerosis, coronary heart disease (CHD), heart failure, hypertension, pulmonary arterial hypertension (PAH), and myocardial ischemia/reperfusion (I/R) injury.

2. Production and metabolism of H₂S

H₂S is produced endogenously from L-cysteine (Fig. 1) by three enzymes, namely cystathionine-ß-synthase (CBS), cystathionine-y-lyase (CSE) and the tandem enzymes cysteine aminotransferase (CAT) and 3-mercaptopyruvate sulfurtransferase (3-MST). CSE and CBS are cytosolic enzymes with tissue-specific distributions. CBS is predominantly located in the central nervous system, whereas CSE predominates in the cardiovascular system, especially the myocardium and vascular smooth muscle cells (VSMCs) [4]. CAT and 3-MST are both cytosolic and mitochondrial enzymes, but the majority of these two enzymes exist in the mitochondria [5]. They are expressed in the brain and vascular endothelium [6,7]. CBS-driven H₂S production involves the condensation of homocysteine with L-cysteine to generate cystathionine. In the reactive process, H₂S is liberated [8]. CSE catalyzes the conversion of L-cysteine to pyruvate, thiocysteine and ammonia. Then, thiocysteine is decomposed nonenzymatically to form cysteine and H₂S [9]. CAT catalyzes the reaction between L-cysteine and α -ketoglutarate, leading

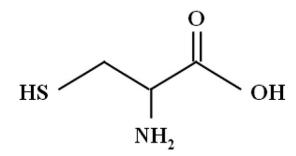
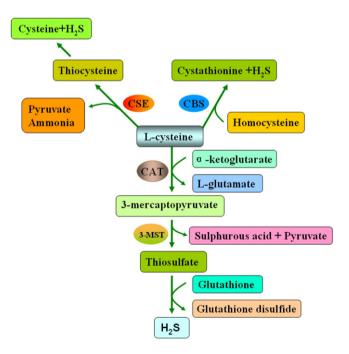



Fig. 1. The chemical structure of L-cysteine.

to the synthesis of 3-mercaptopyruvate and L-glutamate. 3-MST transfers sulfur from 3-mercaptopyruvate into sulfurous acid, pyruvate and thiosulfate. Subsequently, thiosulfate is reduced to H_2S and glutathione disulfide in the presence of reduced glutathione [10]. The enzymatic mechanisms of H_2S production are shown in Fig. 2. After release, four fifths of H_2S exists as HS^- and a trace amount of S^{2-} , but only one fifth exists as undissociated H_2S under physiological conditions. Excess H_2S can be stored in two different forms: sulfane sulfur and acid-labile sulfur.

In order to maintain a proper physiological balance of its metabolism, H_2S can be eliminated through three routes (Fig. 3). Firstly, mitochondrial oxidative modification converts H_2S into thiosulfate, followed by further conversion into sulfite and finally into sulfate, the major end product of H_2S metabolism [11]. Because oxidation of cysteine can also increase urinary sulfate content, urinary thiosulfate acts as a specific marker for whole body H_2S synthesis. The second metabolic pathway is cytosolic methylation to dimethylsulfide via thiol S-methyltransferase. Lastly, binding of H_2S to hemoglobin leads to sulfhemoglobin formation [12]. These biosynthetic and degradative pathways for H_2S have been determined only recently, which will likely

Fig. 2. Biosynthesis pathways of endogenous H₂S. The substrate for the production of endogenous H₂S is L-cysteine. CBS-driven H₂S generation is associated with the condensation of homocysteine with L-cysteine to yield cystathionine and H₂S. CSE catalyzes the transformation of L-cysteine to pyruvate, ammonia, and thiocysteine. The latter is then degraded to cysteine and H₂S. CAT stimulates the release of 3-mercaptopyruvate and L-glutamate via driving the reaction of L-cysteine and α-ketoglutarate. 3-Mercaptopyruvate is then catalyzed to sulfurous acid, pyruvate and thiosulfate by 3-MST. With the assistance from reduced glutathione, thiosulfate is reduced to H₂S and glutathione disulfide.

Download English Version:

https://daneshyari.com/en/article/1965370

Download Persian Version:

https://daneshyari.com/article/1965370

Daneshyari.com