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For many researchers, next generation sequencing data holds the key to answering a category of questions
previously unassailable. One of the important and challenging steps in achieving these goals is accurately
assembling the massive quantity of short sequencing reads into full nucleic acid sequences. For research groups
workingwith non-model orwild systems, short read assembly can pose a significant challenge due to the lack of
pre-existing EST or genome reference libraries. While many publications describe the overall process of
sequencing and assembly, few address the topic of howmany andwhat types of reads are best for assembly. The
goal of this projectwas use realworld data to explore the effects of read quantity and short read quality scores on
the resulting de novo assemblies. Using several samples of short reads of various sizes and qualities we produced
many assemblies in an automatedmanner. We observe how the properties of read length, read quality, and read
quantity affect the resulting assemblies and provide some general recommendations based on our real-world
data set.

Published by Elsevier Inc.

1. Introduction

Current next-generation sequencing (NGS) technologies enable
researchers to address myriad questions regarding biological and
genetic mechanisms. NGS enables researchers to rapidly sequence
genomes (Bentley et al., 2008; Li et al., 2010) or transcriptomes, to
obtain snapshots of global gene expression levels in RNA-seq
experiments (Wang et al., 2009; Costa et al., 2010) and to examine
genome-wide protein-DNA interactions in ChIP-seq experiments
(Barski and Zhao, 2009; Park, 2009) among others. Advancing
technologies and economies of scale have collaborated to bring
these capabilities within reach of even small research communities
studying non-model or wild systems and organisms. Even so, there
exist many barriers to entry into such studies that canmake it difficult
to initiate NGS projects or to extract meaning from the data. In this
project we address some of the questions researchers may have when
embarking on a new NGS project with regard to both quantity and
quality of short reads needed for assembly.

There are many NGS platforms available (Metzker, 2009; Voelkerding
et al., 2009; Bräutigam and Gowik, 2010; Nowrousian, 2010), but the
most common and prolific NGS methods available today produce
extremely large quantities of very short reads (Illumina or ABI SOLiD
sequencing platforms). Successfully assembling these short reads into a
set of contigs representing the original sequences in the biological sample
is a complex problem. This problem is easiest to solve if a reference
genome or transcriptome is available to guide the assembly. However, in
theabsenceof a referencegenome,onemust resort todenovoassemblyof
short-read data, which is more difficult. More challenging still is de novo
assembly of data derived from source material that is expected to have
uneven coverage, such as RNA transcripts where message abundance
varies by several orders ofmagnitude, and theremay bemultiple versions
of each message. For many researchers working with non-model
organism transcriptomes, the last situation is the norm.

Manyof these technologies are capable of producing single or paired-
end reads. Paired-end read information can help to resolve repetitive
regions which might otherwise be intractable to the assembly program
(Narzisi and Mishra, 2011; Wetzel et al., 2011). They also allow
scaffolding of contigs which would otherwise remain fragmented and
they aid in the identification of splice junctions and alternative splice
forms. They can also be beneficial to further analyses downstream of
assembly.

Of the variety of NGS technologies available, we will focus here on
RNA transcript paired-end short reads collected from the Illumina
Genome Analyzer platform and assembled de novo without the aid of
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a reference genome or reference transcriptome. The raw sequence
reads produced by this platform are commonly in the range of 60–
150 bp in length. The inherent errors in this sequencing technique are
generally well-understood (Dohm et al., 2008), and there exist many
open-source and commercial packages designed to assemble these
data into contigs (Metzker, 2009; Miller et al., 2010; Nowrousian,
2010). A discussion of the many available assembly algorithms is
beyond the scope of this paper and has been covered before (Pop,
2009; Paszkiewicz and Studholme, 2010). Here, we have chosen to
use the Velvet short-read assembler (Zerbino and Birney, 2008;
Zerbino et al., 2009; Zerbino, 2010) because it is widely used, and its
abilities and limitations are relatively well understood. We will also
use the Oases extension for Velvet which is designed to assemble
transcript data specifically and is a much less well documented
software package. While Oases is still a relatively ‘young’ program, it
addresses problems inherent in packages tuned to assemble genome
data. A recent publication critically assessed its performance with
respect to other assembly packages and found it to be the best tool to
assemble the chickpea transcriptome (Garg et al., 2011).

Over the course of one year, we produced several sets of transcript
data using the Illumina Genome Analyzer platform. Over this time
period we observed an increase in both the lengths of reads that could
be reliably sequenced as well as the overall average quality scores
reported by the sequencer software. While there were several
changes to the software, firmware, and sequencing chemistry made
available by Illumina, clearly factors outside the sequencing process
may also have contributed to the observed differences in read quality.
This real-world data set presents a variety of relative qualities and
characteristics similar to data encountered by researchers both new
and veteran to this field. As such it is difficult to provide strict controls
for each variable within the data we have. Nevertheless we are able to
make several useful observations that may serve to guide decisions
regarding the amount of data needed to obtain an assembly of
reasonable quality with a minimal investment.

2. Methods

2.1. Transcript sequencing

Transcript RNA was prepared from 13 separate tissues/organs and
life stages of the live-bearing fish, Xiphophorus maculatus Jp 163 A. The
X. maculatus Jp 163 A line is maintained at the Xiphophorus Genetic
Stock Center by brother–sister matings and is inbred over 100
generations (Walter et al., 2006) (see http://xiphophorus.txstate.
edu). RNA samples were sequenced using the Illumina Genome
Analyzer platform; the 13 samples were sequenced in 3 batches,
submitted at 3 separate time points over a year (Catchen, J., et al.,
unpublished results). Each tissue or life stage was sequenced in an
individual flow cell lane as paired end reads of 36 bp or 60 bp. Overall
average quality scores were calculated for each sample, ignoring any
quality score values of 2 (encoded as a ‘B’ in FASTQ format), which is
used as a specialflag to indicate that some type of sequencing error had
occurred. The percentage of reads in a sample containing the ‘B’ flag
was also reported. The short reads were grouped by their time of
creation into three supersets designated as L1, L2, and L3. The
tissues/stages contained in each sample is as follows: L1 contains
whole body RNA from 5 age and/or gender specific samples from
5 days to 15 months of age, L2 contains whole body RNA from two
embryonic stages and two tissue samples, L3 contains three tissue
samples.

2.2. Quality filtration

We processed raw transcript sequence data to remove low-quality
reads by developing a four-stage filtration algorithm for the FASTQ-
encoded data set that is comprised of several stages of checks and

modifications. Stage 1 is a check for uncalled bases; the default setting
is to reject any reads with more than two uncalled bases, but this can
be altered at run-time. Velvet converts uncalled bases (‘N’ characters)
into ‘A’ characters (adenine bases), but in most cases, this would be no
different than a random read error. So, instead of rejecting reads with
2 or fewer uncalled bases, we opted to use the default setting to err for
increased read coverage. Stage 2 searches for the presence of ‘B’
characters in the quality scores; these indicate that a particular error
event is likely to have occurred and therefore the remainder of the
read (distal to the ‘B’ character) should not be used. Any positions
after and including the first ‘B’ character are trimmed off the sequence.
Stage 3 scans for low-quality regions, deleting them and leaving high-
quality fragments. Stage 3 first examines each position with a quality
equal to or below 20 (1 error in 100). If the mean of the quality scores
of the position in question and its up and downstream neighbors is
still 20 or below, that position is marked for deletion. Any position
with a quality score of 10 (1 error in 10) or below is marked for
deletion without the possibility of rescue by neighboring positions. All
the marked positions are then deleted, possibly breaking the read into
smaller fragments of high quality. In Stage 4, the largest of the
fragments remaining from the original read is selected as the trimmed
read and the rest is discarded.

In addition to the process of filtering reads, the tool set we developed
also measures statistics on the final outcomes of each read. Reads are
sorted into four main categories: 1) failure due to quantity of uncalled
bases, 2) failure due to size restrictions post trimming, 3) passage with
trimming, and 4) passage without trimming. The total number of reads
in each of those categories is tallied post filtration. Additionally those
reads that passed may have lost or retained their mate in the filtration
process and this is noted. The failure rate of a set of reads indicates the
fraction of reads that failed for any reason, and the average failure rates
calculated for Fig. 1B are theaverageof failure rates of eachcomponent in
the L1, L2, and L3 samples.

2.3. Assembly and analysis

We chose to use the Velvet short-read assembler because it is widely
used,well-documented, and expertise in its use exists inmany institutes.
Many parameters can be fine-tuned to improve aspects of a de novo
assembly, but it is difficult to generalize their use into an algorithm that
gives the best assembly for all data sets. In the manual refinement of an
assembly, intuition and trial and error can be important components of
the process. However, in order to avoid introducing user-bias into the
assembly process, we used a script included with the Velvet package
calledVelvetOptimiser that optimizes twoof themost important settings
based on predefined rules.

Version 1.0.14 of Velvet (Zerbino and Birney, 2008) was installed
on a Dell R910 rack-mount server with 1 TB of physical memory and
8 quad-core Xeon processors to carry out assemblies. All samples
were assembled independently using VelvetOptimiser version 2.1.7
set to select the k-mer size in the range of 21 to 55 bp (a range of 21 to
35 bp was used for the sample with 36 bp reads) that produced the
best N50 (contig length-weighted median) value; and then to select a
coverage-cutoff that maximized the number of base pairs in large
contigs. A further assembly step was carried out by submitting the
same read set and kmer size determined by VelvetOptimiser to the
Oases (version 0.1.18) extension to Velvet (REF) with an insert length
parameter of 200 bp given.

Determining the quality of an assembly can become very involved
after several rounds of refinement, but initial efforts can be guided by
some basic metrics describing the general size characteristics of the
assembled sequences. A target number of assembled transcripts is very
difficult to provide a priori. While there is no published Xiphophorus
maculatus genome,Oryzias latipes is a closely related specieswith awell
annotatedgenome that contains approximately 20,000 genes.However,
even with this number as an estimate, alternative splice forms and
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