FISHVIER

Contents lists available at SciVerse ScienceDirect

## Comparative Biochemistry and Physiology, Part D

journal homepage: www.elsevier.com/locate/cbpd



## Conservation of group XII phospholipase A<sub>2</sub> from bacteria to human

Timo J. Nevalainen <sup>a,\*</sup>, João C.R. Cardoso <sup>b</sup>

- <sup>a</sup> Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
- b Comparative Molecular Endocrinology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139 Faro, Portugal

#### ARTICLE INFO

Article history:
Received 11 May 2012
Received in revised form 18 July 2012
Accepted 18 July 2012
Available online 31 July 2012

Keywords: GXII PLA<sub>2</sub> Conserved domain pfam06951 Evolution Prokaryotes Eukaryotes

#### ABSTRACT

Vertebrate group XII phospholipases A<sub>2</sub> (GXII PLA<sub>2</sub>, conserved domain pfam06951) are proteins with unique structural and functional features within the secreted PLA<sub>2</sub> family. In humans, two genes (GXIIA PLA<sub>2</sub> and GXIIB PLA<sub>2</sub>) have been characterised. GXIIA PLA<sub>2</sub> is enzymatically active whereas GXIIB PLA<sub>2</sub> is devoid of catalytic activity. Recently, putative homologues of the vertebrate GXII PLA<sub>2</sub>s were described in non-vertebrates. In the current study a total of 170 GXII PLA<sub>2</sub> sequences were identified in vertebrates, invertebrates, non-metazoan eukaryotes, fungi and bacteria. GXIIB PLA<sub>2</sub> was found only in vertebrates and the searches failed to identify putative GXII PLA<sub>2</sub> homologues in Archaea. Comparisons of the predicted functional domains of GXII PLA<sub>2</sub>s revealed considerable structural identity within the Ca<sup>2+</sup>-binding and the catalytic sites among the various organisms suggesting that functional conservation may have been retained across evolution. The preservation of GXII PLA<sub>2</sub> family members from bacteria to human indicates that they have emerged early in evolution and evolved via gene/genome duplication events prior to Eubacteria. Gene duplicates were identified in some invertebrate taxa suggesting that species-specific duplications occurred. The analysis of the GXII PLA<sub>2</sub> homologue genome environment revealed that gene synteny and gene order are preserved in vertebrates. Conservation of GXII PLA<sub>2</sub>s indicates that important functional roles involved in species survival and were maintained across evolution and may be dependent on or independent of the enzyme's phospholipolytic activity.

© 2012 Elsevier Inc. All rights reserved.

#### 1. Introduction

Phospholipase A<sub>2</sub> (PLA<sub>2</sub>) represents a large family of enzymes and enzyme-like proteins characterized in organisms ranging from bacteria to vertebrates (Dennis et al., 2011). They are proposed to have emerged very early in evolution (Nevalainen et al., 2012). According to the calcium ion dependency as to their catalytic activity, PLA<sub>2</sub> members are classified in three broad categories of calcium-dependent secreted PLA<sub>2</sub>s (sPLA<sub>2</sub>) and cytosolic PLA<sub>2</sub>s and calcium-independent cytosolic PLA<sub>2</sub>s (Dennis et al., 2011). Secreted PLA<sub>2</sub>s are the most abundant and they are synthesized by many different cell types, secreted in various body fluids and participate in important physiological and pathological functions, such as digestion of dietary phospholipids, inflammatory reaction, antimicrobial defence and venom toxicity (Nevalainen et al., 2000, 2008; Fry et al., 2009; Murakami et al., 2010, 2011).

According to their molecular structure sPLA<sub>2</sub>s have been subdivided into 18 groups (G) (GIA, GIB, GIIA, GIB, GIIC, GIID, GIIE, GIIF, GIII, GV, GIX, GX, GXIA, GXIB, GXIIA, GXIIB, GXIII and GXIV) (Six and Dennis, 2000). Recently, a novel classification system was proposed for sPLA<sub>2</sub>s

E-mail addresses: timneva@utu.fi (T.J. Nevalainen), jccardo@ualg.pt (J.C.R. Cardoso).

(Nevalainen et al., 2012) based on their conserved structural domains (Finn et al., 2008; Marchler-Bauer et al., 2011), and they were restricted to two general distinct categories, the cd-collection and pfamcollection. The origin of sPLA2s of both collections was traced back to bacteria and members of the two collections were proposed to have shared common ancestry and evolved independently under distinct evolutionary pressures (Nevalainen et al., 2012). The cd-collection comprises members of GI, GII, GIII, GV, GX and GXI PLA2s and the pfam-collection GXII and GXIV PLA2s. Within sPLA2s, the cd-collection members were the most diverse and five sub-families were identified. Two sub-families constitute the pfam-collection, pfam09056 (GXIV PLA<sub>2</sub>s) conserved from bacteria to fungi and animals and pfam06951 (GXII PLA<sub>2</sub>s) which was previously reported to be vertebrate specific but was also identified in non-vertebrate metazoans and nonmetazoan eukaryotes introducing novel challenges in the study of the origin and evolution of sPLA<sub>2</sub>s (Nevalainen et al., 2012).

In vertebrates, two GXII PLA<sub>2</sub>s (GXIIA and GXIIB PLA<sub>2</sub>s) that became functionally divergent after a gene duplication event have been reported. A GXIIA PLA<sub>2</sub> and a catalytically inactive GXII PLA<sub>2</sub>-like protein (GXIIB PLA<sub>2</sub>) were cloned from human (Gelb et al., 2000; Rouault et al., 2003) and also from other tetrapods and teleosts (Hillier et al., 2004; Carninci et al., 2005; Leong et al., 2010). Sequence comparisons revealed that with the exception of the histidine-aspartic acid (HD) dyad amino acid motif of the histidine catalytic site, the vertebrate GXII PLA<sub>2</sub>s comprise a unique group and share scarce sequence and structural similarities with the other sPLA<sub>2</sub> members. The signature motifs of GXII PLA<sub>2</sub>s within

Abbreviations:  $PLA_2$ , phospholipase  $A_2$ ;  $sPLA_2$ , secreted phospholipase  $A_2$ .

<sup>\*</sup> Corresponding author at: Department of Pathology, University of Turku, Kiinamyllynkatu 10, FlN-20520 Turku, Finland. Tel.: +358 40 7274215; fax: +358 2 3337459.

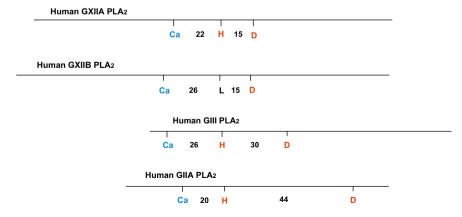
the  ${\rm Ca^{2}}^{+}$ -binding site (GSPLF in human GXIIA PLA<sub>2</sub>) and the histidine (CCXXHDXC), and aspartic acid (CD) catalytic sites are localised in the central part of the molecule, whereas in the other PLA<sub>2</sub>s such as the human GIII (cd04704) and GIIA PLA<sub>2</sub> (cd00125) they are closer to the N-terminus. Furthermore, the histidine and aspartic acid catalytic sites are further apart in GIII and GIIA than in GXIIA PLA<sub>2</sub>s (Fig. 1). The spacing of cysteine residues and putative disulfide bonds are also distinct from the other sPLA<sub>2</sub>s (Gelb et al., 2000).

Functional characterisation of GXIIA PLA<sub>2</sub> revealed that its catalytic activity is relatively low in comparison with the other sPLA<sub>2</sub> members. While GXIIA PLA<sub>2</sub> is strongly expressed in human heart and skeletal muscle, kidney and pancreas (Gelb et al., 2000), the enzymatically inactive GXIIB PLA<sub>2</sub> is mainly expressed in liver, small intestine and kidney in both human and mouse (Rouault et al., 2003). GXII PLA<sub>2</sub>s are suggested to mediate their physiological roles in part via alternative mechanisms independent of their catalytic activity (Gelb et al., 2000; Ho et al., 2001; Rouault et al., 2003), which at present are poorly characterised. In tetrapods, GXIIA PLA<sub>2</sub> signalling is also associated with embryonic development and in amphibians ectodermal GXIIA PLA<sub>2</sub> induces ectopic olfactory structures by blocking bone morphogenetic protein signalling independent of PLA<sub>2</sub> hydrolytic activity (Muñoz-Sanjuán and Brivanlou, 2005).

The present study aims to understand the origin and functional evolution of the GXII PLA<sub>2</sub> members by the identification of their putative vertebrate homologues in non-vertebrate species. Based upon the conserved sequence annotation of the vertebrate pfam06951 (GXII PLA<sub>2</sub>) members, genes and transcripts for GXII PLA2s were retrieved from a wide variety of organisms ranging from bacteria to unicellular and multicellular eukaryotes using in silico database searches, and the homologue functional sites, which contain the catalytic and Ca<sup>2+</sup>-binding sites, were identified and putative functions considered. Homologues of the vertebrate GXIIA PLA<sub>2</sub> were characterised in several invertebrates, non-metazoan eukaryotes, fungi and bacteria suggesting that they have emerged early in evolution via gene and genome duplication events. GXIIB PLA2s were exclusively found in vertebrates. Considerable conservation within the GXII PLA<sub>2</sub> functional domains across evolution was identified and comparisons of the gene environments of vertebrate and invertebrate members suggested lack of conservation within the non-vertebrate homologue regions while the gene linkage is maintained in the vertebrate radiation. The identification of pfam06951 members in nonvertebrate eukaryotes and prokaryotes makes it possible to reconstruct the evolutionary history of GXII PLA2 and will contribute to a better understanding of their function and discovery of novel physiological roles which may have been maintained across evolution.

#### 2. Material and methods

#### 2.1. Database mining and data collection


GXII PLA<sub>2</sub> sequences were retrieved from publicly available protein databases of NCBI (http://www.ncbi.nlm.nih.gov) and Swiss-Prot (http://www.expasy.ch/sprot/) using the Basic Local Alignment Search Tool (BLASTp) algorithm (Altschul et al., 1997) and default settings. Database searches were performed using the mature peptide sequences of the human GXIIA PLA<sub>2</sub> (Q9BZM1) and GXIIB PLA<sub>2</sub> (Q9BX93). In addition, bacterial PLA<sub>2</sub> and PLA<sub>2</sub>-like protein sequences were identified at the NCBI Microbial and Eukaryotic Genome database (http://www. ncbi.nlm.nih.gov/genome). Searches covered all completed genomes at the database (2019 bacterial, 106 archaeal and 268 eukaryotic genomes, January 2012 release) and also available EST data using the tBLASTn and sequence matches with e-value <10 were retrieved and their sequences analysed. The deduced protein sequences were obtained using the BCM Search Launcher (http://searchlauncher.bcm. tmc.edu/seq-util/Options/sixframe.html) and compared with available homologue data.

#### 2.2. Gene sequence database searches

Putative vertebrate and invertebrate GXII PLA<sub>2</sub> genes were retrieved from the NCBI and ENSEMBL (www.ensembl.org) databases. Searches in Ensembl were performed using a similar strategy described above to search the available lamprey (*Petromyzon marinus*), teleost (Atlantic cod, *Gadus morhua*; tetraodon, *Tetraodon nigroviridis*; fugu, *Takifugu rubripes*; medaka, *Oryzias latipes*; stickleback, *Gasterosteus aculeatus* and zebrafish, *Danio rerio*), frog (*Xenopus tropicalis*), lizard (*Anoles carolinensis*) and chicken (*Gallus gallus*) genomes using the BioMart tool to identify the Ensembl Gene ID homologues. Similarly, the genomes of the tunicate *Ciona intestinalis*, nematode *Caenorhabditis elegans*, fruit-fly *Drosophila melanogaster* and unicellular yeast *Saccharomyces cerevisiae* were also investigated.

#### 2.3. In silico sequence annotations

The conserved domains of the PLA<sub>2</sub> retrieved were deduced from NCBI Conserved Domains Database CDD-27036 PSSMs (http://www.ncbi.nlm.nih.gov/cdd). The result includes an alignment between the query and the search model consensus sequence, the expect-value for the alignment, the identity (name) of conserved domain and



**Fig. 1.** Comparison of the locations of the Ca<sup>2+</sup>-binding site (Ca) and histidine (H) and aspartic acid (D) catalytic sites of human GXIIA (Q9BZM1, conserved domain pfm06951) and GXIIB (Q9BX93, pfam06951) PLA<sub>2</sub>s with those of human GIII (Q9NZ20, cd04704) and GIIA (P14555, cd00125) PLA<sub>2</sub>s. The horizontal lines represent the mature protein chains of GXIIA PLA<sub>2</sub> (167 amino acid residues, aa), GXIIB PLA<sub>2</sub> (175 aa), GIII PLA<sub>2</sub> (141 aa) and GIIA PLA<sub>2</sub> (124 aa). The metal binding amino acids of the Ca<sup>2+</sup>-binding site are glycine, proline and phenylalanine in GXIIA PLA<sub>2</sub>, glycine, tyrosine and leucine in GXIIB PLA<sub>2</sub>, two glycines in GIII PLA<sub>2</sub> and histidine and two glycines in GIIA PLA<sub>2</sub>. The distances between the Ca<sup>2+</sup>-binding and catalytic sites are indicated by the number of amino acids residues between the respective sites.

### Download English Version:

# https://daneshyari.com/en/article/1978629

Download Persian Version:

https://daneshyari.com/article/1978629

<u>Daneshyari.com</u>