

The expanding diversity of serine hydrolases Istvan Botos¹ and Alexander Wlodawer²

Serine hydrolases use a hydroxyl of a serine, assisted by one or more other residues, to cleave peptide bonds. They belong to several different families whose general mechanism is well known. However, the subtle structural differences that have recently been observed across a variety of families shed light on their functional diversity, including variations in mechanism of action, differences in the modes of substrate binding, and substrate-assisted orientation of catalytic residues. Of particular interest are the Rhomboid family serine proteinases that are active within the plasma membrane, for which several new structures have been reported. Because these enzymes are involved in biological and pathological processes, many are becoming important targets of drug design.

Addresses

¹Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA ²Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA

Corresponding author: Wlodawer, Alexander (wlodawer@ncifcrf.gov)

Current Opinion in Structural Biology 2007, 17:683-690

This review comes from a themed issue on Proteins Edited by Edward Baker and Guy Dodson

Available online 24th September 2007

0959-440X/\$ - see front matter Published by Elsevier Ltd.

DOI 10.1016/j.sbi.2007.08.003

Introduction

Proteinases (peptidases, proteases) are enzymes that catalyze the hydrolysis of peptide bonds. They are classified into six classes on the basis of their catalytic mechanism: serine, threonine, cysteine, aspartate, glutamate, and metalloproteases. Serine proteinases (SP) cleave the peptide bond by nucleophilic attack of the serine hydroxyl group on the scissile carbonyl bond (some enzymes with nucleophiles such as threonine or cysteine share the fold with serine proteases; they will not be further discussed here). Typical SPs have an active site catalytic triad consisting of the $O\gamma$ atom of the serine, the imidazole ring of the histidine, which serves as a general acid/ base, and the carboxylate of an aspartic acid, which helps to orient the imidazole ring. In addition, an oxyanion hole provides electrophilic assistance to the nucleophilic attack by the serine $O\gamma$ on the carbonyl atom of the scissile bond. The goal of this review is to highlight some key structural features of the serine proteinase structures published in the past two years (Table 1).

Structures of trypsin-like and chymotrypsin-like proteinases

The terms 'trypsin-like proteinases' and 'chymotrypsinlike proteinases' are sometimes used interchangeably to not only identify members of MEROPS [1] (also see http://merops.sanger.ac.uk/) clan PA (mixed catalytic type), family S1 (chymotrypsin), but also less strictly to more distant families in that clan. All these SPs share the same basic fold in their catalytic domains (although they may or may not also have other domains) but vary widely in their specificity and regulation. A number of them will be discussed in this section.

Kallikreins are trypsin-like proteases that cleave kininogen; they are grouped into two major categories, plasma and tissue. Plasma kallikrein is a multidomain, glycosylated protein that is more homologous to factor XI than to tissue kallikrein with a single protease domain. The structural basis for the specificity of plasma kallikrein was revealed by its crystal structure [2]. Human tissue kallikreins (hK) belong to a closely related 15-member family. Its best functionally characterized member, hK1, is involved in blood pressure regulation. Structural studies of hK1 revealed that binding of a peptide substrate induces structural rearrangement of the catalytic Ser that optimally positions it for interactions with the catalytic His [3]. The highly specific hK4, which activates hK3/ PSA, is normally expressed in the prostate but is overexpressed in prostate and ovarian cancer [4]. The hK4 structure uncovered a novel metal-binding site formed by a 10-residue loop linked to the N-terminal segment, specific for this enzyme. hK4 can exist in a Zn^{2+} -free high activity form and a Zn^{2+} -bound low activity form [4]. The prostatic fluid contains micromolar concentrations of zinc that can inhibit hK4.

Component B of earthworm fibrinolytic enzyme (EFE-b) is a two-chain glycoprotein that exhibits strong fibrinolytic activity [5]. It has a novel conserved structural motif that is formed by two consecutive Cys residues linked by a *cis* peptide bond and a disulfide bond. This ring may play a similar role to Tyr151 in u-PA, t-PA, or DSPA and may be related to the selectivity for the P2' of its substrate.

SpIC proteinase from *Staphylococcus aureus*, structurally most similar to V8 proteinase, another trypsin-like enzyme [6], is possibly involved in staphylococcal virulence. The protease is latent until cleaved by signal peptidase during secretion. Its structure reveals a V8-like fold, a well-defined S1 pocket, and a possible mechanism of substrate-induced conformational switch [7].

Table 1

Summary of the structures covered in this review

Enzyme	Family	Peptidase type	MEROPS ID	PDB accession code	Reference
Complement factor B Complement component C2a MASP-2 zymogen R444Q mutant fragment Human tissue kallikrein 1 Human tissue kallikrein 4 Human plasma kallikrein Prophenoloxidase-activating factor I Prophenoloxidase-activating factor II Earthworm fibrinolytic enzyme component B Factor XI zymogen A. actus venom serine proteinase I and II A. contortrix contortrix protein C activator	S1A	Chymotrypsin-A	MEROPS ID S01.196 S01.194 S01.229 S01.160 S01.251 S01.212 S01.204 S01.960 S01.243 S01.213 S01.x S01.466 S01.292	20K5 20DP,20DQ 1ZJK 1SPJ 2BDG,2BDH,2BDI 2ANW,2ANY 20LG 2B9L 1YM0 2F83 10P0,10P2 2AIP,2AIQ AS9	Reference [13*] [14] [15] [3] [4] [2] [11*] [12] [5] [10] [8] [9] [7]
Hemoglobin protease NS3 protease	S6 S7	IgA1-specific serine peptidase Flavivirin	S06.003 S07.001	1WXR 2FOM,2FP7	[16**] [17*]
Subtilase cytotoxin protease SubA Subtilisin-like protease <i>Vibrio</i> <i>Serratia</i> proteinase K	S8A	Subtilisin Carlsberg	S08.121 S08.x S08.x	2IY9 1SH7 2B6N	[22] [24 •] [23]
Fibroblast activation protein α Prolyl tripeptidyl peptidase	S9A	Dipeptidyl-peptidase IV	S09.007 S09.017	1Z68 2D5L,2DCM	[19] [20]
Prolyl endopeptidase Archaeoglobus fulgidus LonB	S9B S16	Prolyl oligopeptidase Lon-A	S09.001 S16.005	1YR2,2BKL 1ZOW,1ZOC,1ZOB, 1ZOG 1ZOF	[21] [28•]
Sesbania mosaic virus polyprotein protease Membrane protease 1510-N Birnavirus VP4	S39A S49 S50	Sobemovirus peptidase Signal-peptide peptidase A Infectious pancreatic necrosis birnavirus Vp4 peptidase	S39.001 S49.005 S50.001	1ZYO 2DEO 2GEF	[18] [29] [30 °]
E. coli GlpG H. influenzae hiGlpG	S54	Rhomboid-1	S54.016 S54.024	2IC8,2NRF,2IRV 2NR9	[31 ^{••} ,32 [•] ,33] [35]

Trypsin-like Agkistrodon actus snake venom serine proteinases I and II are identical except for one amino acid. An interesting feature observed in these structures is the conserved N-glycosylation site at Asn35. This oligosaccharide, close to the active site, can sterically restrict access of some inhibitors, such as soybean trypsin inhibitor (STI) [8]. Agkistrodon contortrix protein C activator activates protein C without relying on thrombomodulin. Structures of the native and inhibited enzyme reveal three carbohydrate moieties positioned around the active site that are involved in substrate recognition [9]. These carbohydrates, together with the positive charge on the interfacial surface, may be crucial for activation—protein C does not bind the macromolecular trypsin inhibitors BPTI and STI.

Factor XI is an essential coagulation protein that circulates as a disulfide-linked homodimer [10] and cleaves factor IX. Each monomer has four homologous apple domains (A1–A4) that mediate essential protein–protein interactions, followed by a chymotrypsin-like serine protease domain (Figure 1). Each apple domain is formed by seven β strands that cradle a single α helix. Thrombin binds the A1 domain through its exosite I, whereas the platelet surface receptor glycoprotein Ib-V-IX (GpIb) binds A3 through its leucine-rich repeats. These two apple domain sites are diametrically positioned in factor XI, separated by the centrally positioned protease domain. Thrombin cleaves after Arg369, and the free N-terminus moves 20 Å and inserts into the activation pocket of factor XIa, generating an oxyanion hole [10].

The easter-type SPs, prophenoloxidase-activating factors (PPAF) I and II are involved in the insect immune response. The structures of the SP domain of PPAF-I [11[•]] and the whole PPAF-II from Holotrichia diomphalia [12] reveal a chymotrypsin-like fold of their proteinase domains (Figure 2). PPAF-I belongs to the catalytic group of clip domain SPs, in contrast to PPAF-II, which belongs to the non-catalytic group (the latter contains Gly353 in place of the catalytic serine). The clip domain of PPAF-II is a protein-interaction module with a novel fold; it is essential to the binding and activation of the 76 kDa phenoloxidase via its central cleft [12]. After cleavage by PPAF-III, the clip domain remains tightly attached to the SP domain, and the enzyme oligomerizes into two hexameric rings that serve as a hub for phenoloxidase binding. In contrast to PPAF-II, the clip domain of PPAF-I is separated from the SP domain during activation.

Download English Version:

https://daneshyari.com/en/article/1979645

Download Persian Version:

https://daneshyari.com/article/1979645

Daneshyari.com