

# The VTLISFG motif in the BH1 domain plays a significant role in regulating the degradation of Mcl-1 $^{\star}$

### Kang Xiao<sup>a,b,\*</sup>, Pengxuan Chen<sup>b</sup>, Donald Choy Chang<sup>a</sup>

<sup>a</sup> Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong <sup>b</sup>Shenzhen Middle School, 18 Shenzhong Street, North Renmin Road, Luohu District, Shenzhen, Guangdong Province, P.R. China, 518025

#### ARTICLE INFO

Article history: Received 21 December 2013 Received in revised form 16 January 2014 Accepted 16 January 2014

Keywords: Apoptosis Mcl-1 Degradation motif PEST domain

#### ABSTRACT

Mcl-1 is a member of the Bcl-2 family protein; its degradation is required for the initiation of apoptosis. The mechanism, however, is not yet clearly known. Previously, it was reported that Mcl-1 is degraded through the ubiquitination-mediated pathway and the PEST domain is the motif responsible for promoting this degradation. We found evidence that this may not be true. We generated several Mcl-1 deletion mutants and examined their effects on protein stability. Deletion of the PEST domain did not prevent the degradation of Mcl-1 during apoptosis. The BH1 domain, but not the PEST, BH3 or BH2 domain, exhibited a short half-life. A peptide named "F3" (VTLISFG) in the C-terminus of the BH1 domain appears to be critical for the rapid turnover of Mcl-1. Deletion of F3 from GFP-Mcl-1-ΔPEST retarded the degradation of this mutant. F3 appeared to be the minimum functional sequence of the degradation of F3 with p32 resulted in the degradation of p32 during UV-induced apoptosis, while wild type p32 was not affected. Taken together, these findings suggest that F3 (VTLISFG), instead of PEST, is the major motif responsible for the degradation of Mcl-1 during apoptosis.

 $\odot$  2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. All rights reserved.

#### 1. Introduction

Apoptosis is a tightly controlled process of cell suicide that is of fundamental importance in maintaining the normal physiological function of a biological organism. The Bcl-2 family proteins are known to play a crucial role in regulating the apoptotic progression.

E-mail address: kennyxiaokang@gmail.com (K. Xiao).

The Bcl-2 family proteins include both pro- and anti-apoptotic members. The ratio between these two subgroups plays an important role in determining the fate of cells [1-3].

Among the anti-apoptotic Bcl-2 family proteins, Mcl-1 has an unusual short half-life. Mcl-1 was originally identified in differentiating myeloid cells in 1993 [4]. The human MCL1 gene is located on chromosome 1q21. During the apoptotic process, the Mcl-1 protein level decreases dramatically in contrast to the other anti-apoptotic proteins Bcl-2 and Bcl-xL [5–7]. The down regulation of Mcl-1 is thought to result from a suppression of Mcl-1 synthesis as well as an enhancement of Mcl-1 protein degradation. The mRNA level of Mcl-1 decreases in response to various apoptotic stimuli such as UV irradiation and staurosporine [6]. In particular, during the apoptosis induced by DNA damage agents or hydrogen peroxide, transcription is blocked due to ubiquitination and this is subsequently followed by the degradation of RNA polymerase II [8–11].

The degradation of the Mcl-1 protein is believed to be mediated through the ubiquitination pathway, since applying the proteasome inhibitor MG132 is able to stabilize the protein level of Mcl-1 [6,7]. Moreover, Mcl-1 can be ubiquitinated at five lysines (5, 40, 136, 194 and 197) and a 482 KDa HECT-domain-containing ubiquitin ligase named Mule was identified as the E3 ubiquitin ligase [12]. Another E3 ligase,  $\beta$ -TrCP, which is a Skp1-CUL1-F box protein (SCF) family member, was also found to recognize the phosphorylated Mcl-1 mediated by GSK3 [13]. In addition, a deubiquitinylase called "ubiquitin-specific

2211-5463/\$36.00 © 2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. All rights reserved. http://dx.doi.org/10.1016/j.fob.2014.01.006

<sup>\*</sup>This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Abbreviations:* β-TrCP, β-transducin repeat-containing protein; Bax, Bcl-2associated X protein; Bcl-2, B-cell lymphoma-2; BH domain, Bcl-2 homology domain; Bim, Bcl-2-interacting mediator; BSA, bovine serum albumin; Caspase, cysteine aspartase; CCD, charge-coupled device; EGFP, enhanced green fluorescent protein; EIF2, eukaryotic translation initiation factor 2; EYFP, enhanced yellow fluorescent protein; GCN2, general control nonrepressed 2; GSK-3β, glycogen synthase kinase-3β; HECT, homologous to E6-AP carboxylterminus; h, hour; HRP, horseradish peroxidase; kD, kilodaltons; Mcl-1, myeloid cell leukaemia sequence 1; MEM, minimum essential medium; Mule, Mcl-1 ubiquitin ligase E3; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; pDNA, plasmid DNA; PERK, PKR-like ER kinase; SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; TM domain, transmembrane domain; UV, ultraviolet light.

<sup>\*</sup> Corresponding author. Present address: Joint Biology Laboratory of BGI and Shenzhen Middle School, Shenzhen Middle School, 18 Shenzhong Street, North Renmin Road, Luohu District, Shenzhen, Guangdong Province, P.R. China, 518025. Tel.: +86-18620397217.

peptidase 9 X-linked" (USP9X) is reported to be a regulator of Mcl-1 degradation, as silencing of USP9X by RNA interference (RNAi) led to the loss of Mcl-1 at the protein but not mRNA level [14].

In addition to poly-ubiquitination, Mcl-1 may be cleaved by caspase-3 to disrupt the Mcl-1-Bim interaction, allowing the release of Bim to exert the pro-apoptotic function and lead to Bax activation and cytochrome *c* release [15,16]. On the other hand, a short form of Mcl-1, Mcl-1S/ $\Delta$ TM, was generated by caspase-3 cleavage [15,17,18]. This short form resembles pro-apoptotic "BH3 only" proteins and promotes apoptosis. Therefore, the cleavage of Mcl-1 may contribute to the feed-forward amplification of apoptotic signals once caspase-3 is activated.

In addition to their role in down regulation, what is the functional domain that plays a crucial role in facilitating the degradation of Mcl-1? The Mcl-1 protein is comprised of 350 amino-acid residues and contains the BH domains 1–3. In the C-terminus, Mcl-1 contains a transmembrane (TM) domain that is involved in localization to the outer mitochondrial membrane [19]. In the N-terminus, Mcl-1 contains two PEST regions (rich in proline, glutamic acid, serine and threonine amino-acid residues), which are often found in rapidly turn-over proteins. Previously the PEST regions were suggested to be responsible for the short half-life of Mcl-1 [20]. This suggestion, however, was questioned by other investigators [21,22]. Thus, we would like to conduct a series of experiments to directly examine which domain is responsible for the degradation of Mcl-1 during apoptosis.

#### 2. Materials and methods

#### 2.1. Chemicals

Anti-GFP and anti-cdc2 monoclonal antibodies (sc-9996) were obtained from Santa Cruz Biotechnology, Inc. Anti-GFP polyclonal antibody (A-6455) was purchased from Molecular Probes. Anti- $\beta$ -tubulin mouse monoclonal antibody (T4026) was from Sigma–Aldrich, Inc. MG132 (474781) was from Calbiochem.

#### 2.2. Mammalian cell culture and gene transfection

HeLa cells, which were obtained from American Type Culture Collection (ATCC), were cultured in minimum essential medium (MEM) containing 10% fetal bovine serum, 100 U/ml penicillin and 100 mg/ml streptomycin in 5% CO<sub>2</sub> at 37 °C. The fusion genes were transfected into cells with Lipofectamine<sup>TM</sup> 2000 (Invitrogen) using the standard protocol provided by Invitrogen.

#### 2.3. Apoptosis induction

UV irradiation was used as the inducer of apoptosis in this study. The light source was originated from the UV light equipped inside a biological safety cabinet. To induce apoptosis using UV irradiation, cells that were grown as a monolayer in a petri dish were washed with PBS once, covered with PBS and then exposed to UV light (300 mW) for 3 min. The PBS was then replaced with MEM.

#### 2.4. Plasmid construction

The human Mcl-1 gene was kindly provided by Dr. Steven W. Edwards from the University of Liverpool [21]. Mcl-1 was amplified with primers: Forward 5'-CCGGAATTCCGATGTTTGGCCTCAAAAGAAACG-3' and Reverse 5'-CGCG-GATCCCGCTATCTTATTAGATATGCCAAAC-3'. Then the amplified Mcl-1 was cloned into a pEGFP-C3 vector (Clontech) using EcoR I and BamH I (Roche).

The human P32 gene construct pYW59, encoding the Flag-tagged P32/TAP (1–282) gene, was kindly provided by Dr. S. Diane Hayward from the Johns Hopkins School of Medicine [23]. P32 was

then cloned into a pEYFP-N1 vector (Clontech) with primers: Forward 5'-CCGCTCGAGATGCTGCCTCTGCTGCGCTG-3' and Reverse 5'-GGAATTCCCTGGCTCT-TGACAAAACTCTTG-3'. The truncation mutants of GFP-Mcl-1 and F3 fused P32-YFP were generated by the same method as described above (Table 1).

#### 2.5. Western blotting analysis

HeLa cells were cultured in 60 mm petri-dishes. Cells at different time points after UV treatment or gene expression were collected and lysed in NP-40 lysis buffer (50 mM Tris–HCl, pH 8.0, 150 mM NaCl and 1% NP-40) in the presence of  $1 \times$  protease inhibitor cocktail. Whole cell lysates (80–100 mg/lane) were separated on 10–12% SDS–PAGE and transferred onto a Hybond ECL nitrocellulose membrane (Amersham). After blocking, the membranes were incubated for 3 h at room temperature or overnight at 4 °C with antibodies at a dilution of 1:500 or 1:1000. Then, the membranes were washed three times with  $1 \times$  PBS with 0.1% of Tween-20 for 10 min, incubated with horseradish peroxidase-conjugated secondary antibody at a dilution of 1:5000 for 1 h, and ultimately developed using the ECL<sup>TM</sup> Western-blotting analysis system.

#### 2.6. The living cell imaging system and image analysis

The GFP fusion protein over-expressed HeLa cells were examined under a fluorescent microscope equipped with a CCD camera. The image data acquired were further processed and analyzed by Meta-Morph (Universal Imaging Corp.). Then the refined images were obtained using Confocal Assistant v4.0 (Bio-Rad) and Adobe Photoshop (Adobe Systems).

#### 3. Results

## 3.1. It is the BH1-BH2 domain instead of the PEST domain that has a short half-life

In order to determine which domains of Mcl-1 are responsible for its rapid turnover, we generated a series of mutants by fusing GFP with the different functional domains of Mcl-1 (Fig. 1A).

It has been reported that the PEST domain, in which proline (P), glutamic acid (E), serine (S) and threonine (T) are enriched, is responsible for the short half-life of certain proteins [20]. However, researchers have also argued that the PEST domain is not responsible for the rapid turnover of Mcl-1 [21,22]. Therefore, we wanted to first test whether or not the PEST domain is responsible for its rapid turnover of Mcl-1. We examined the stability of two mutants, GFP-Mcl-1- $\Delta$ PEST and GFP-PEST<sub>Mcl-1</sub>, by Western blotting analysis (see Fig. 1B). Surprisingly, the protein level of GFP-Mcl-1- $\Delta$ PEST was found to decrease rapidly, during UV-induced apoptosis, just like endogenous Mcl-1. The protein level of GFP-PEST<sub>Mcl-1</sub>, on the other hand, remained largely unchanged. Fluorescence imaging also showed a high expression level of GFP-PEST<sub>Mcl-1</sub> (Fig. 2A). These findings suggest that the PEST domain is not responsible for the rapid turnover of Mcl-1.

Next, we examined the stability of other domains, including N-terminus (short N-terminus without PEST, Ns), BH3 and BH1-BH2. Interestingly, both the proportion of fluorescence-positive cells and the fluorescence intensity in the GFP-BH1-BH2<sub>Mcl-1</sub> over-expressed HeLa cells were much lower than the other mutants (Fig. 2A). Also, as shown by Western blotting analysis, the protein level of GFP-BH1-BH2<sub>Mcl-1</sub> in the HeLa cells decreased rapidly during UV-induced apoptosis, while GFP-BH3<sub>Mcl-1</sub> and GFP-Ns<sub>Mcl-1</sub> did not (Fig. 1C). These results suggest that the BH1-BH2 domain is responsible for the rapid turnover of Mcl-1.

Download English Version:

## https://daneshyari.com/en/article/1981669

Download Persian Version:

https://daneshyari.com/article/1981669

Daneshyari.com