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Abstract

Quantum mechanical calculations of transmission coefficients for some permeant molecules across the human red cell and resting axolemma
squid axon membranes are carried out. The calculations depend on (i) the molecular weight of the molecule and (ii) the depth and width of the
potential well of the membrane. In most cases good agreement between calculated and experimental values is found.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In a thermodynamic treatment, Staverman [1,2] recognized
that the reflection coefficient σ is an adequate measure of
membrane selectivity. When σ=1 all the solute is reflected from
a membrane, while σb1 means that some of the solute
molecules penetrate [3]. The value of σ depends on the
particular membrane and solute molecule [1,2,4]. For the
membranes considered here, the membrane potential [5] is
negative (−ve) under physiological conditions. At low ionic
strength or excitation, the potential corresponding to other
membranes can be positive (+ve). For the simplest one-
dimensional case in quantum mechanics (QM), the (−ve) and
(+ve)membrane potentials can be represented, respectively, by a
rectangular well of finite depth −V0 and a potential barrier of
finite height +V0, both with thickness δ=2a as shown in Fig. 1.
These potentials are treated theoretically in many QM books
where one can see that the mathematical development of the two
cases is not the same [6–12]. In Fig. 1a the potential is less than
that of its surroundings and consequently is attractive while that
of Fig. 1b is repulsive. In thermodynamic analysis of biological

systems, the negative and positive potentials are both considered
indifferently as barriers. Only Danielli [13] has proposed the use
of separate potentials in thermodynamic analysis, one of which
is somewhat similar to that of Fig. 1a with the difference that his
potential applies to molecules such as benzene and propane.
Meanwhile, diffusion of non-electrolytes within biological
membranes closely resembles diffusion in polymers [14].

In the present report, the red cell and resting axolemma squid
axon membranes with a potential well are considered. A particle
incident from the left in Fig. 1a is either totally reflected (σ=1)
or partially transmitted (σb1). In these cases, σ has the same
meaning and some dependence on the potential as Staverman
and others [1–5] have proposed. Once more due to Danielli
[13], the membrane can be regarded as constituting the only
significant obstacle to diffusion. It is then interesting to carry
out QM calculations of the transmission coefficient T=1−σ for
permeant molecules across the potential well and compare the
result with experimental values. In these calculations, T depends
on the depth of the potential well, its width and the mass of the
incident molecule. Consequently, one can get a better idea
about the separate role played by the membrane potential and
its selectivity in QM. The molecules treated here are
formamide, N-methylformamide, acetamide, urea, ethylene
glycol, N-methylacetamide, propionamide, methylurea, thio-
urea, 1,1-dimethylurea, ethylurea, 1,3-dimethylurea, glycerol
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and malonamide for the human red cell. For the resting
axolemma squid axon, methanol, formamide, ethanol, urea,
ethylene glycol, propionamide, methylurea, glycerol and
malonamide molecules are considered. In most of these cases,
the Tcalc are in excellent agreement with the experimental values
Texp [15–24], particularly for the resting axolemma squid axon.

2. Calculations

2.1. Transmission coefficient Tcalc

The potential of Fig. 1a has been treated mathematically by
many authors in more or less detail [6–12]. Here the procedure
developed in [8] has been used because of its clarity and
simplicity. When V0 is negative, the wave functions which are
solutions to the Schrödinger equations in the three regions 1, 2
and 3 (Fig. 1a) for a particle of mass m incident from the left are:

u1 ¼ Dexpðixp1=JÞ þ Fexpð−ixp1=JÞ xb−a ð1Þ

u2 ¼ Bexpðixp2=JÞ þ Cexpð−ixp2=JÞ −abxba ð2Þ
u3 ¼ Aexpðixp1=JÞ xNa ð3Þ

where p1 ¼ ð2mEÞ1=2 and p2 ¼ ½2mðE þ V0Þ�1=2: ð4Þ
The constants D, F and A represent, respectively, the amplitudes
of the incident, reflected and transmitted waves. The reflection
σ and transmission T coefficients are given by the absolute
values of the squares of F/D and A/D, respectively. The
boundary conditions for φ and dφ/dx being continuous at x=a

and x=−a determine these constants and hence σ and T, keep-
ing in mind that σ+T=1. Following the same procedure as in
[8], one obtains the expression for the transmissivity Tcalc:

Tcalc ¼ 1=½1þ ð1=4Þðp1=p2−p2=p1Þ2 sin2ð2p2 a=JÞ� ð5Þ

which is the same as Eq. (6.63) of [8] after some mathematical
transformation.

2.2. Bound states

The wave functions φ corresponding to eigenvalues of the
bound states in the region where xNa must be finite as x tends
to +∞. They decrease as x increases. Thus:

u ¼ Aexpð−x p1=JÞ with p1 ¼ ð2mjEjÞ1=2 ð6Þ

where E is the energy of the bound state which is negative. This
means that E=− |E|. Inside the square well the wave function is:

u ¼ Bexpðixp2=JÞ þ Cexpð−ixp2=JÞ
where p2 ¼ ½2mðV0−jEjÞ�1=2: ð7Þ

Continuity at x=a determines the constants B and C in terms of
A. For x=−a, the solution is the exponential function φ=Dexp
(xp1/ℏ) that decreases as x tends to −∞. Since it is convenient to
place the origin of the x-axis at the center of the potential well,
one has two classes of solutions, symmetric and antisymmetric.
Using the boundary conditions at x=−a and after some manip-
ulation, one gets:

½jEj=ðV0−jEjÞ�1=2

¼ tan½ð2mðV0−jEjÞÞ1=2ða=JÞ� symmetric
−cot½ð2mðV0−jEjÞÞ1=2ða=JÞ� antisymmetric

(
ð8Þ

Replacing |E| by −E in Eq. (8) gives exactly Eq. (6.49) of [8].
Up to this stage, the procedure of [8] has been followed. Eq. (8)
can be solved graphically or numerically. Most authors [6–12]
have employed different graphical methods even though a
graphical solution is approximate. Since the problem treated
here is quite sensitive to the values of V0 and δ, a better result is
obtained numerically.

Squaring both sides of Eq. (8), one gets:

½jEj=ðV0−jEjÞ�

¼ tan2½ð2mðV0−jEjÞÞ1=2ða=JÞ� symmetric
cot2½ð2mðV0−jEjÞÞ1=2ða=JÞ� antisymmetric

(
ð9Þ

The numerical solution of this equation gives the eigenvalues
of |E| corresponding to the bound states inside the well. The
number of these bound states depends on the values of V0 and δ.
Using this value of |E| in Eq. (5), one gets the best agreement
between Tcalc and Texp. The values of |E| are determined such
that the difference between the left- and right-hand sides of

Fig. 1. Rectangular potential well of finite depth (a) and potential barrier of finite
height (b), showing the three regions 1, 2 and 3 of integration.
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