

Contents lists available at ScienceDirect

Journal of Steroid Biochemistry & Molecular Biology

journal homepage: www.elsevier.com/locate/jsbmb

Impact of structural modifications at positions 13, 16 and 17 of 16β -(m-carbamoylbenzyl)-estradiol on 17β -hydroxysteroid dehydrogenase type 1 inhibition and estrogenic activity

René Maltais^{a,b}, Alexandre Trottier^{a,b}, Xavier Barbeau^{c,d}, Patrick Lagüe^{d,e}, Martin Perreault^{a,b}, Jean-François Thériault^{a,b}, Sheng-Xiang Lin^{a,b}, Donald Poirier^{a,b,*}

- a Endocrinology and Nephrology Unit, CHU de Québec-Research Center (CHUL, T4), Québec City, QC, Canada
- ^b Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- ^c Département de chimie, Institut de biologie intégrative et des systèmes (IBIS), Québec City, QC, Canada
- d Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec City, QC, Canada
- ^e Département de biochimie microbiologie et bio-informatique, Institut de biologie intégrative et des systèmes (IBIS), Québec City, QC, Canada

ARTICLE INFO

Article history: Received 27 February 2015 Received in revised form 11 September 2015 Accepted 25 October 2015 Available online 28 October 2015

Keywords: Steroid Enzyme inhibitor Estrogen Chemical synthesis Estradiol isomer

ABSTRACT

The chemical synthesis of four stereoisomers (compounds $\bf 5a-d$) of 16β -(m-carbamoylbenzyl)-estradiol, a potent reversible inhibitor of 17β -hydroxysteroid dehydrogenase type 1 (17β -HSD1), and two intermediates (compounds $\bf 3a$ and $\bf b$) was performed. Assignment of all nuclear magnetic resonance signals confirmed the stereochemistry at positions 13, 16 and 17. Nuclear overhauser effects showed clear correlations supporting a C-ring chair conformation for $\bf 5a$ and $\bf b$ and a C-ring boat conformation for $\bf 5c$ and $\bf d$. These compounds were tested as 17β -HSD1 inhibitors and to assess their proliferative activity on estrogen-sensitive breast cancer cells (T-47D) and androgen-sensitive prostate cancer cells (LAPC-4). Steroid derivative $\bf 5a$ showed the best inhibitory activity for the transformation of estrone to estradiol (95, 82 and 27%, at 10, 1 and 0.1 μ M, respectively), but like the other isomers $\bf 5c$ and $\bf d$, it was found to be estrogenic. The intermediate $\bf 3a$, however, was weakly estrogenic at 1 μ M, not at all at 0.1 μ M, and showed an interesting inhibitory potency on 17β -HSD1 (90, 59 and 22%, at 10, 1 and 0.1 μ M, respectively). As expected, no compound showed an androgenic activity. The binding modes for compounds $\bf 3a$ and $\bf b$, $\bf 5a$ - $\bf d$ and CC-156 were evaluated from molecular modeling. While the non-polar interactions were conserved for all the inhibitors in their binding to 17β -HSD1, differences in polar interactions and in binding conformational energies correlated to the inhibitory potencies.

© 2015 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction				
	2. Materials and methods				26
	2.1.	Chemis	try	26	
		2.1.1.	Synthesis of compound 2	26	
		2.1.2.	Synthesis of compounds 3a and b	26	
			Synthesis of compounds 5a and b		
		2.1.4.	Synthesis of compounds 5c and d	27	
	2.2.	Biologic	cal assays	28	
		2.2.1.	17β-HSD1 inhibition	28	
		2.2.2.	Estrogenic activity	28	
		2.2.3.	ERβ-binding affinity	28	
		2.2.4.	Androgenic activity	29	

E-mail address: donald.poirier@crchul.ulaval.ca (D. Poirier).

^{*} Corresponding author at: Laboratory of Medicinal Chemistry, CHU de Québec—Research Center (CHUL, T4–42), 2705 Laurier Boulevard, Québec City, QC G1V 4G2, Canada. Fax: +1 418 654 2298.

	2.3.	Molecular modeling	29	
3.	Result	s and discussion	30	
	3.1.	Chemical synthesis of C13-epi CC-156 stereoisomers	30	
	3.2.	NMR characterization of stereoisomers	30	
	3.3.	17β-HSD1 inhibition	31	
	3.4.	Molecular modeling	31	
		Estrogenic and androgenic activities		
4.	Conclu	usion	33	
	Confli	cts of interest	34	
		wledgments		
	Refere	ences	34	

1. Introduction

Estrogen-sensitive diseases affect the health of a significant number of women around the world, from a benign but painful disease such as endometriosis, to fatal diseases such as breast and endometrial cancers. The estrogen hormones, especially estradiol (E2), strongly accelerate tumor growth by stimulating the proliferation of cancer cells through interaction with the estrogen receptor (ER) [1]. Among the different proteins involved in estrogen production and modulation, 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) has been identified as a promising therapeutic target to block E2 biosynthesis [2–8]. This enzyme transforms the steroid estrone (E1) into E2, the most potent estrogen in women, but also transforms dehydroepiandrosterone (DHEA) into 5-androstene-3β,17β-diol (5-diol), a less potent estrogen found in large concentration in post-menopausal women [9,10]. The blockade of 17β -HSD1 activity has solicited great interest over the past 20 years and many different strategies have been reported to obtain active inhibitors [11–16]. However, despite these intensive efforts, no inhibitor has yet reached the clinical trial step. One of the major causes that delayed the emergence of 17\beta-HSD1 inhibitors as new drugs was the lack of potent candidates with no estrogenic activity.

In the last few years, we have identified the 16β -(m-carbamoylbenzyl) estradiol (CC-156) as a strong inhibitor of 17β -HSD1 (Fig. 1A) [17,18]. Unfortunately this E2 derivative

possesses estrogenic activity when tested on estrogen-sensitive breast cancer cell lines (T-47D and MCF-7) and tissues (uterine and vagina) [19]. Different attempts put forth to fix this problem, such as introducing a 2-methoxy group, removing the 3-OH and rigidifying the 16β-side chain (Fig. 1B-D), have met with moderate success [17,20-22]. However, modification of the phenolic moiety of CC-156 by replacing the OH at C3 by an ethylbromide side chain has led to the first non-estrogenic irreversible steroid inhibitor of 17β-HSD1 (Fig. 1E) [19,23,24]. We are now interested in pursuing our modification of the CC-156 scaffold to obtain a non-estrogenic reversible inhibitor. Recent work from our group on the estrogenic activity of E2 epimers has highlighted the potential of the inversion of the configuration at C13 (18-methyl) and/or C17 (OH) to decrease the binding affinity with ERa and consequently the estrogenic activity. Thus, relative binding affinity (RBA) values of 1.6% and 1.2% were obtained for 13-epi-17 α -E2 and 13-epi-17 β -E2, respectively [16]. Based on these results, we then wanted to validate this strategy in order to decrease the residual estrogenic activity of 17B-HSD1 reversible inhibitor CC-156. However, the consequence of such structural modifications on the inhibitory activity of CC-156 was difficult to predict, and for this reason, the chemical synthesis of each stereoisomeric form of CC-156 at positions 13, 16 and 17 was necessary to assess their potential as a non-estrogenic inhibitor of 17β-HSD1 (Fig. 1F).

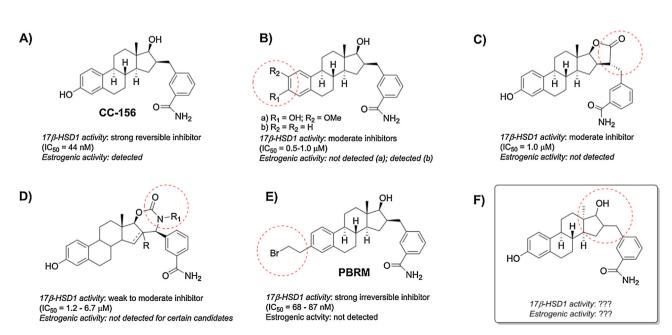


Fig. 1. Chemical structure of 17β -HSD1 inhibitor CC-156 (A) and structures representing the previously reported strategies (B–E) and novel strategy (F) used to reduce the residual estrogenic activity of CC-156. The structural modifications target positions 2, 3, 16 and 17 of CC-156.

Download English Version:

https://daneshyari.com/en/article/1991240

Download Persian Version:

https://daneshyari.com/article/1991240

<u>Daneshyari.com</u>