

Journal of Steroid Biochemistry & Molecular Biology 103 (2007) 293-297

Steroid Biochemistry & Molecular Biology

www.elsevier.com/locate/jsbmb

An analog of $1\alpha,25$ -dihydroxy-19-norvitamin D_3 with the 1α -hydroxy group fixed in the axial position lacks biological activity *in vitro*

Rafal R. Sicinski ^{a,b}, Agnieszka Glebocka ^{a,b}, Lori A. Plum ^a, Hector F. DeLuca ^{a,*}

Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland
Department of Biochemistry, University of Wisconsin-Madison,
433 Babcock Drive, Madison, WI 53706, USA

Abstract

The relationship between the A-ring chair conformation of vitamin D compounds and their ability to bind the vitamin D receptor (VDR) has long attracted the attention of many researchers. It was established that in the crystalline complexes of hVDRmt with the natural hormone, $1\alpha,25$ -dihydroxyvitamin D_3 (1), and its side-chain analogs the vitamins exist in β -chair form with an equatorial orientation of 1α -OH. However, with all these ligands the interconversion between both A-ring forms would be possible in solution. In an attempt to verify the conformation of vitamin D compounds required for binding the VDR we prepared analog 4, characterized by the presence of an axial 1α -hydroxy group. Since the additional ring connecting 3β -oxygen and C-2 prevents A-ring conformational flexibility, the synthesized vitamin 4 can exist exclusively in the α -chair form. The geometrical isomer 5 with a free 3β -OH group was also obtained. The analog 5 binds very poorly to VDR, whereas the vitamin 4 is practically devoid of binding ability. Both compounds also show very low HL-60-differentiating activity. When tested *in vivo* in mice the analogs 4 and 5 exhibit significant calcemic responses with analog 4 showing more activity than analog 5.

Keywords: Vitamin D analogs; 19-Norvitamin D₃; Vitamin D receptor; VDR binding; Cellular HL-60 differentiation

1. Introduction

The discovery that $1\alpha,25$ -dihydroxyvitamin D_3 ($1\alpha,25$ -(OH) $_2D_3$, 1; Fig. 1) is the hormonal form of vitamin D marked the beginning of intense structure–activity studies aimed at discovering new analogs characterized by modified biological properties [1–3]. Parallel to these studies the conformation of the vitamin D molecule has also undergone close scrutiny. A series of interesting studies directed to the side chain conformation of different vitamin D analogs examined which spatial regions have the highest possibility of being occupied by the 25-hydroxy group [4,5]. Besides the side chain conformation, the A-ring conformational equilibrium of vita-

E-mail address: deluca@biochem.wisc.edu (H.F. DeLuca).

min D compounds has attracted considerable research interest for more than 30 years [4]. Advances in NMR spectroscopy and development of force field calculation methods made it possible to establish, or even predict, the proportion of equilibrating α - and β -chair A-ring forms (Fig. 2a). Particularly interesting was another closely related problem discussed in the literature, namely the correlation of A-ring conformation with biological activities of vitamin D compounds. As early as in 1974 it was proposed [6] that equatorial orientation of the 1α -hydroxy group (the β -chair form shown in Fig. 2a) is necessary for calcium regulation ability. Six years ago Moras reported the crystal structures of hVDR ligand binding domain (LBD) bound to the hormone 1 [7] as well as to the ligands with an unnatural configuration at C-20 [8], and it became clear that the vitamin D receptor binds (at least in the crystalline state) vitamin D analogs with their A-rings in the β-chair conformation. It seemed, therefore, interesting to synthesize a vitamin D analog that could only

^{*} Corresponding author at: Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA. Tel.: +1 608 262 1620; fax: +1 608 262 7122.

Fig. 1. Chemical structure of $1\alpha,25$ -dihydroxyvitamin D_3 (calcitriol, 1) and its analogs.

assume the opposite α -chair conformation of its ring-A, and as a consequence, possess the 1α -hydroxy group in the axial orientation.

In 1998 we synthesized an analog of 1 possessing the Aring exocyclic methylene group transposed from C-10 to C-2 [9] and we established that such modification of the structure (compound 2) practically did not change the affinity for the VDR. Very recently, we synthesized a 3'-hydroxypropylidene derivative of 1α ,25-dihydroxy-19-norvitamin D₃ (3) that also bound to VDR almost as well as 1 [10]. These results prompted us to attempt a synthesis of a tetracyclic vitamin D analog of a structure 4; it could be expected that a three-carbon bridge between C-2 and 3 β -oxygen should not interfere with the LBD. On the other hand, structural

constrains of this molecule should prevent the ring-A from flipping over to the alternative form, effectively "freezing" its α -chair conformation (Fig. 2b).

2. Materials and methods

2.1. Preparation of 1α , 25-dihydroxy- and 3β , 25-dihydroxy-19-norvitamin D_3 analogs **4** and **5**

Vitamin D analogs 4 and 5 were synthesized at the Department of Biochemistry, University of Wisconsin-Madison and at the Department of Chemistry, Warsaw University according to the synthetic route presented in Schemes 1 and 2.

Fig. 2. Conformational equilibrium in ring-A in 1α -hydroxyvitamin D analogs (a) and the A-ring conformation of the synthesized analog 4 (b).

Download English Version:

https://daneshyari.com/en/article/1992531

Download Persian Version:

https://daneshyari.com/article/1992531

<u>Daneshyari.com</u>