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a b s t r a c t

The fast increase of ‘multi-omics’ data does not only pose a computational challenge for its analysis but
also requires novel algorithmic methodologies to identify complex biological patterns and decipher the
ultimate roots of human disorders. To that end, the massive integration of omics data with disease phe-
notypes is offering a new window into the cell functionality. The minimum dominating set (MDS)
approach has rapidly emerged as a promising algorithmic method to analyze complex biological
networks integrated with human disorders, which can be composed of a variety of omics data, from pro-
teomics and transcriptomics to metabolomics. Here we review the main theoretical foundations of the
methodology and the key algorithms, and examine the recent applications in which biological systems
are analyzed by using the MDS approach.

� 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The rapid technological developments of ‘multi-omics’ based
methodologies are providing an increasing amount of data on the
fundamental constituents of the cells, such as genes (genomics),
RNAs (transcriptomics), proteins (proteomics) and metabolites

(metabolomics). Computational and system biologists are, there-
fore, having a unique opportunity to design novel algorithmic
and mathematical-based methods to analyse, identify and extract
biological knowledge from the data [1]. Many computational tech-
niques have then been proposed to analyse biological phenomena
based on the collected experimental data. Among them, network
approaches are becoming relevant because they use knowledge
not only from the individual molecules, but also from the complex
web of interactions between the components of the cell [2]. This
detail is relevant because biological functions and diseases cannot
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be associated with a single molecule. The functional patterns
emerge through complex associations between life molecules.
Similarly, disease phenotypes are the result of pathobiological pro-
cesses that occur in a biological pathway, or in a larger scale, in the
human interactome, which represents the entire map of all molec-
ular interactions in a cell [3,4]. Network pharmacology is also
becoming more relevant since drugs efficacy depends on their
interactions with molecules located in a large network [5,6]. As a
result, when a right target is selected, the drug may enhance its
effects via network propagation but, in the opposite case, it also
may lead to unwanted side effects. Strategies to target hubs, to
use disease modules to identify new targets as well as to disrupt
strategic locations in disease pathways are among the present
and future directions using cellular network concepts [3,7,8].

Network biology, therefore, rapidly emerged as a branch of
computational biology that focuses on analyzing biological data
using a network representation. Several types of interactions
(protein-protein, chemical reactions, transcription-regulation) can
define specific network levels which can be investigated using
algorithmic tools and metrics. Protein networks are defined by pro-
teins that are physically binding to each other. Metabolic networks
consist of metabolites and chemical reactions where the latters are
catalyzed by enzymes, and regulatory networks are represented by
transcriptional factors that regulate genes. Evolutionary models,
extraction of biological motifs, disease-gene identification and dis-
ease module prediction are some examples of the application of
the network techniques across different network levels [3].

In this review, we focus on a novel algorithmic approach that is
showing promising results to analyze complex biological networks.
The Dominating Set (DS) and minimum dominating set (MDS) con-
cepts emerged from classical graph theory several decades ago. The
associated algorithms and their variants have been applied to
assist a rich variety of problems from computer and wireless
communication networks to social systems [9]. However, the
application of MDS to specific complex network patterns such as
scale-free networks had not been explored except one for web
graphs [10]. This scale-free network structure is important because
it seems ubiquitous in many biological systems. From protein-
protein interaction networks to metabolic networks, the degree
distribution of the network follows a power-law (i.e., the probabil-
ity that a node with k links follows PðkÞ / k�c). Networks with this
degree distribution are called scale-free networks. An application
of the MDS methodology to network controllability analysis
unveiled the conditions necessary to achieve full controllability
and showed that a small fraction of nodes can control the entire
network [11]. This finding later inspired Wuchty to investigate in
more detail controllability in protein interaction networks [12].
Unexpectedly, his findings showed that not only the optimized
subset of proteins within the MDS can reach/control any protein
of the non-MDS, but also that the proteins in the MDS are enriched
with unique biological functions and features, such as cancer-
related, and virus targeted-genes. This review assembles the state
of the art on the MDS algorithmic approaches that are having an
impact on analyzing a wealth of ‘omics’ systems, from drug-
target and protein networks to non-coding RNA interactions.

2. Methods

2.1. Minimum dominating set

The minimum dominating set is a well-known concept in graph
theory and computer science [9]. In this paper, we assume that
networks are represented as graphs. A graph GðV ; EÞ consists of a
set of nodes V and a set of edges E, where a node represents some
object and an edge represents a relation, or existence of a relation,

between two objects. For example, in a protein-protein interaction
(PPI) network, a node corresponds to a protein and an edge corre-
sponds to an interaction between two proteins. Each edge has a
direction in directed networks, whereas it does not (i.e., each edge
is bi-directional) in undirected networks. Therefore, each edge is
represented by a pair of nodes. For example, ðu;vÞ represents an
edge between nodes u and v. It is to be noted that ðu;vÞ means
an edge directed from u to v in directed networks whereas we do
not distinguish ðu; vÞ from ðv ;uÞ in undirected networks. Hereafter,
networks (resp., graphs) mean undirected networks (resp., graphs)
unless otherwise stated.

For a graph GðV ; EÞ, a subset of nodes S#V is called a dominating
set (DS) if every node in V is either an element of S or is adjacent to
an element of S. That is, for any node v 2 V ;v 2 S holds or there
exists a node u 2 S such that ðu;vÞ 2 E. We say that v is dominated
by u if ðu;vÞ 2 E. Then, S is a dominating set if each node in V is
either in S or is dominated by some node in S. A dominating set
with the minimum number of elements is called a minimum
dominating set (MDS). As discussed later, MDSs are not necessarily
uniquely determined (i.e., there may exist multiple MDSs for a
given graph GðV ; EÞ).

Fig. 1 illustrates an MDS and a DS, where dark gray circles rep-
resent nodes in an MDS or a DS. In Fig. 1, node a is dominated by
node b, and node c is dominated by nodes b and e, In this case,
the MDS is not uniquely determined: S ¼ fa; d; eg is also an MDS.

2.2. Computation of MDS

Although MDS is a very important concept in graph theory, it is
known that computation of an MDS is NP-hard, which means that
it is not plausible that there exists a theoretically efficient (i.e.,
polynomial-time) algorithm to exactly compute an MDS. However,
NP-hardness does not necessarily mean that there does not exist a
practically fast algorithm. Actually, many algorithms have been
proposed for exactly computing an MDS. From a theoretical view-
point, extensive studies have been done on development of OðanÞ
time exact algorithms for smaller constants a [13–15], where n is
the number of nodes in graph G. To our knowledge, the current
best a is 1.4689 [15]. However, no implementation results are
included in most of these studies and it seems that these algo-
rithms are not practically useful. From a practical viewpoint, many
heuristic methods have also been proposed using such techniques
as simulated annealing, genetic algorithms, and ant colony opti-
mization (see [16] and its references). However, these methods
are not guaranteed to output exact solutions, or there is no theoret-
ical guarantee on the quality of solutions. Among exact computa-
tional methods, the most widely used one would be that based
on integer linear programming (ILP).

In the ILP-based method, an instance of the MDS problem is
transformed into an integer linear program in a simple manner.
Although ILP is also an NP-hard problem, there exist practical sol-
vers such as CPLEX [17] and Gurobi [18] that can solve large-scale
ILP instances and thus we can utilize them. In this method, we
assign a 0–1 variable yv to each node v in V, where yv ¼ 1 (resp.,
yv ¼ 0) indicates that v is in an MDS (resp., not in an MDS). From
a given graph GðV ; EÞ, we construct an integer linear program as
follows.

minimize
X

v2V
yv ;

subject to yv þ
X

ðu;vÞ2E
yu P 1 for all v 2 V ;

yv 2 f0;1g for all v 2 V : ð1Þ

Then, an MDS is given by the set S ¼ fv jyv ¼ 1g. The objective func-
tion means that the number of nodes with value 1 (i.e., the number
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