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a b s t r a c t

In microarray analysis, biclustering is used to find the maximal subsets of rows and columns satisfying
some coherence criteria. The found submatrices are usually called as biclusters. On one hand, different
criteria would help to find different types of biclusters, thus the definition of coherence criterion is critical
to the biclustering method. On the other hand, qualitative criteria result to qualitative biclustering meth-
ods that cannot evaluate the qualities of the biclusters, while quantitative criteria can numerically show
how well the mined biclusters and are more useful in real applications. In bioinformatics communities,
there are several quantitative coherence measurements for linear patterns proposed. However, they face
the problem of weakness in finding all subtypes of linear patterns or sensitivity to the noise. In this work,
we introduce a coherence measurement for the general linear patterns, the minimal mean squared error
(MMSE), which is designed to handle the evaluation of biclusters with shifting, scaling and the general
linear (the mixed form of shifting and scaling) correlations. The experiments on synthetic and real data
sets show that the proposed methods is appropriate for identifying significant general linear biclusters.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, microarray techniques play an important role in bio-
logical research. The data are usually transformed into a numerical
matrix to be analyzed, in which rows refer to genes and columns
represents experimental conditions. genes are not necessarily
coherently expressed on all conditions, instead they might be co-
expressed only on a small subset of conditions such as cells [1]
or samples from the same disease subtype [2]. In such case, biclus-
ters are biologically and clinically interesting. Therefore, bicluster-
ing is crucial on finding gene subsets (rows) showing similar
expression behaviors on subsets of conditions (columns) and many
methods have been proposed in literature for gene expression data
biclustering.

To do biclustering, one first needs to determine a criterion to
judge whether a submatrix can be regarded as a bicluster, then
he should design an efficient searching algorithm to find out as
many as possible maximal submatrices that satisfy the criterion.
There are two kinds of assessment criteria: qualitative and
quantitative, accordingly the biclutering methods can be classified
as qualitative and quantitative ones. Since the qualitative biclus-
tering methods cannot numerically describe how well the mined
biclusters, the quantitative ones are more informative to real appli-
cations. Moreover, according to the found pattern types,

biclustering algorithms can also be categorized as nonlinear and
linear coherent ones. Various techniques have been proposed to
identify nonlinear coherent bicluster patterns from gene expres-
sion data: (1) two-way hierarchical clustering method (HCL) [3];
(2) the Bayesian-based biclustering (BBC) [4] that are based on a
rigorous statical model; (3) the qualitative biclustering algorithm
(QUBIC) that can search biclusters in a general form [5]; (4) the
iterative signature algorithm (ISA) [6]; (5) the order preserving
submatrix algorithm (OPSM) [7]; (6) the xMotif method [8]; (7)
Samba method [9]; and (8) the gene shaving (GSH) method [10].
Though originally targeted by non-linear methods [9,7,6,8,11,12],
linear measures are still informative in evaluating the quality of
discovered biclusters [13].

Biclustering is first introduced by Cheng and Church [14]. They
use the Mean Squared Residue (MSR) to measure the shifting pat-
terns in biclusters. The MSR measure has been widely followed by
other methods as a coherence measure to identify linear biclusters
from gene expression data [14–20]. The innovative idea of MSR is
based on the variability of the genes’ expression neighborhood
with regard to their arithmetic mean—if all the elements in a sub-
matrix are similar, then the mean squared residue is small.
However, the MSR-based biclustering methods [14,21] suffer from
a major limitation, pointed out by Aguilar-Ruiz [16], that it can
only help to identify biclusters exhibiting shifting patterns
whereas linear biclusters include not only shifting, but also scaling
and even more general linear patterns. Since the scaling or linear
patterns are also very important to the biological functions, and
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have been convinced by many researches related to gene reg-
ulatory pathways [15,22], as well as different kinds of cancers
and tumors [23,24] (especially the negative correlated linear pat-
terns), developing biclustering methods for the linear patterns is
of significance.

In order to face the challenge of searching scaling and linear
patterns, a few methods have been proposed. For example, the p-
cluster and d-cluster methods [25] search scaling patterns indi-
rectly by using logarithm transformation to convert them into nor-
mal shifting patterns, they impose a strict assumption on the
model thus cannot deal with general linear patterns. Anirban
et al. proposed Scaling Mean Squared Residue (SMSR) to specially
measure scaling patterns [26], however, this measurement cannot
correctly evaluate the negative scaling patterns. Teng et al. used
the Average Correlation Value (ACV) to evaluate the quality of
biclusters [27], which is not a rigid measurement and sensitive
to noise though it can correctly identify most approximate perfect
scaling patterns. Pontes et al. suggested to use virtual errors (VE)
by computing the difference between the standardized gene
expression values and the expected pattern values, to identify
some interesting biclusters which are ignored by MSR [28].
However, this measurement still has no ability to perfectly evalu-
ate the negative correlated patterns. Ayadi et al. proposed Average
Spearman’s rho (ASR) based on Spearman’s rank correlation [29] to
overcome the weakness of ACV, but it fails to measure the negative
correlated patterns. Flores et al. proposed Spearman’s biclustering
measure(SBM) using absolute value to detect the negative corre-
lated patterns [20]. However, it fails to distinguish a perfect linear
pattern from a non-linear pattern with same ranking trends.
Nepomuceno et al. have tried to minimize the mean squared resi-
due by nonlinear optimization techniques [30]. Unfortunately, they
failed to find the negative correlations due to the constraints on the
parameters. Gu et al. proposed a statistical model to describe dif-
ferent kinds of gene expression patterns, but it puts constraints
on the overlap among biclusters [4].

From above we can see that there are two common but critical
problems to be solved in the above methods: (i) they lack a unified
rigid ranking measurement to evaluate the scaling/linear patterns;
(ii) they cannot detect a special kind of patterns where negative
correlations are involved. Although some newly developed qual-
itative methods have the ability of detecting the scaling patterns
[31,5], even with the negative correlations [5], how to quantita-
tively measure scaling/linear patterns is still an open question.
With these regards, we try to define a generalized, unified mea-
surement not only for shifting patterns, but also for positively
and negatively scaling patterns, or even general linear patterns.

In this work, we define minimal mean squared error (MMSE) as a
coherence measurement to identify biclusters with shifting, scal-
ing, and general linear patterns. By the validation experiments,
we show the superiority of our proposed MMSE as compared to
other measurements on the measurement of general linear pat-
terns. The experimental results also show MMSE-based bicluster-
ing has competitive performance than other traditional clustering
and non MSR-based biclustering methods because its found
MMSE-biclusters include most numerical and biological significant
linear patterns undetected by other methods.

2. Problem definition

Through out the paper, we denote a gene expression profiling
(or microarray) data set as a triplet M ¼ ðG;C; lÞ, where
G ¼ fg1; g2; . . . ; gng is a set of genes (rows), C ¼ fc1; c2; . . . ; cmg is a
set of conditions (columns), and l : G� C ) R is the level function
by which lðgi; cjÞ represents the expression level of gene gi on

condition cj. Or simply, a gene microarray data set is represented
as a matrix below if i stands for gene gi, column j for condition
cj, where li;j is short for lðgi; cjÞ,

M ¼

l1;1 l1;2 . . . l1;m

l2;1 l2;2 . . . l2;m

..

. ..
. ..

. ..
.

ln;1 ln;2 . . . ln;m

0
BBBB@

1
CCCCA

Definition 1 (bicluster). Given a gene expression data set
M ¼ ðG;C; lÞ, let B ¼ ðI; J; dÞ be a triplet, where I # G; J # C, and
d : I � J ) R is the level function of B satisfying
dðgi; cjÞ ¼ lðgi; cjÞ; 8ðgi; cjÞ 2 I � J. B is a bicluster iff genes in I
exhibit a coherent expression behavior (correlated with each other
following a specific pattern) across all the conditions in J.

Now that we only consider how to measure the coherence of B
instead of the whole gene expression data M, for simplicity, we
abbreviate dðgi; cjÞ as di;j; gi 2 I as i 2 I, and cj 2 J as j 2 J without
confusion hereafter (gene gi in ith row, and condition cj in jth col-
umn). Thus, the triplet B ¼ ðI; J; dÞ is equivalent to a submatrix of
M:

B ¼

d1;1 d1;2 . . . d1;jJj

d2;1 d2;2 . . . d2;jJj

..

. ..
. ..

. ..
.

djIj;1 djIj;2 . . . djIj;jJj

0
BBBB@

1
CCCCA

Definition 2 (shifting pattern). A bicluster B ¼ ðI; J; dÞ is said to
exhibit a shifting pattern if all of its elements di;j satisfy the
condition:

di;j ¼ pj þ bi ð1Þ

where pj is the base value of the jth column, and bi is the shifting
factor for the ith row.

Definition 3 (scaling pattern). A bicluster B ¼ ðI; J; dÞ is said to
exhibit a scaling pattern if all of its elements di;j satisfy the
condition:

di;j ¼ aipj ð2Þ

where pj is the base value of the jth column, and ai is the scaling fac-
tor for the ith row.

To integrate the ideas behind both shifting and scaling patterns,
we define linear patterns:

Definition 4 (linear pattern). A bicluster B ¼ ðI; J; dÞ is said to
exhibit a linear pattern if all of its elements di;j satisfy the
condition:

di;j ¼ aipj þ bi ð3Þ

where pj is the base value of the jth column, ai and bi are the scaling
and shifting factors for the ith row respectively. We also call
p ¼ fp1;p2; . . . ;pjJjg the base vector, a ¼ fa1;a2; . . . ;ajIjg the scaling
vector, and b ¼ fb1; b2; . . . ;bjIjg the shifting vector of the linear
pattern.

Shifting, scaling and linear patterns are all of biological inter-
ests. A shifting pattern of a subset of genes reveals that the genes
express towards to the same trend, though the curves shift to each
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