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a b s t r a c t

Whole exome sequencing (WES) and RNA sequencing (RNA-Seq) are two main platforms used for next-
generation sequencing (NGS). While WES is primarily for DNA variant discovery and RNA-Seq is mainly
for measurement of gene expression, both can be used for detection of genetic variants, especially single
nucleotide variants (SNVs). How consistently variants can be detected from WES and RNA-Seq has not
been systematically evaluated. In this study, we examined the technical and biological inconsistencies
in SNV detection using WES and RNA-Seq data from 27 pairs of tumor and matched normal samples.
We analyzed SNVs in three categories: WES unique – those only detected in WES, RNA-Seq unique –
those only detected in RNA-Seq, and shared – those detected in both. We found a small overlap (average
�14%) between the SNVs called in WES and RNA-Seq. The WES unique SNVs were mainly due to low cov-
erage, low expression, or their location on the non-transcribed strand in RNA-Seq data, while the RNA-
Seq unique SNVs were primarily due to their location out of the WES-capture boundary regions (account-
ing �71%), as well as low coverage of the regions, low coverage of the mutant alleles or RNA-editing. The
shared SNVs had high locus-specific coverage in both WES and RNA-Seq and high gene expression levels.
Additionally, WES unique and RNA-Seq unique SNVs showed different nucleotide substitution patterns,
e.g., �55% of RNA-Seq unique variants were A:T ? G:C, a hallmark of RNA editing. This study provides an
important evaluation on the inconsistencies of somatic SNVs called in WES and RNA-Seq data.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Single nucleotide variants (SNVs) are the most abundant form
of genetic variation in genome sequences and somatic SNVs play
critical roles in disease [1]. The discovery of many driver SNVs
has led to new targets for therapeutic treatments and preventive
measures. Examples include vemurafenib for the BRAF V600 muta-
tions in melanoma [2,3] and gefitinib, erlotonib, and afatinib for
EGFR mutations in lung cancer [4]. The recent advances in next-
generation sequencing (NGS) technologies, especially whole
exome sequencing (WES) and whole transcriptome sequencing
(RNA-Seq), have helped investigators generate a massive amount
of NGS data, from which genetic variants, including SNVs, are
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detected. Many tools are now available for the detection of somatic
SNVs from NGS data [5].

Both whole genome sequencing (WGS) and WES have been
applied to detect SNVs in large scale cancer studies. While WGS
can detect the full spectrum of variants (SNVs, insertions/deletions
(indels), copy number variations (CNVs), and structural variants
(SVs) across the whole cancer genome, WES is more cost-effective
in detecting SNVs and indels located in the 1–2% of the genome
that encodes for functional proteins [6]. There is good evidence
that SNVs within the exome are responsible for many diseases,
so WES has been applied extensively in research and clinically
[6–8]. RNA-Seq is commonly used for the measurement of gene
expression levels, detection of gene fusions, and identification of
splicing events. Because RNA-Seq is based on direct sequencing
of cDNA, the product of the mRNA through reverse transcription,
it is practically feasible to detect SNVs from RNA-Seq data [9,10].
This is a unique feature that is different from the traditional
microarray-based gene expression. RNA-Seq also has the ability
to detect RNA editing, which is a post-transcriptional process that
modifies RNA transcripts. One of the most common mechanisms of
RNA editing is the deamination of adenosine to inosine by the pro-
tein Adenosine Deaminase Acting on RNA (ADAR). The inosine is
interpreted in a similar way to guanosine and, thus, results in an
adenosine to guanine (A ? G) change [11].

RNA-Seq has been extensively applied to genomic and tran-
scriptomic studies, including cancer. For example, a large-scale
RNA-Seq study of lung adenocarcinoma identified several cancer
driver genes [12], indicating its utility in a transcriptome analysis
of cancer samples. This study demonstrated that in addition to
identifying fusion genes and differential gene expression, RNA-
Seq could detect well-known cancer driver genes. RNA-Seq has
also been combined with WGS to better understand the mutational
landscape of lung cancer [13,14]. These studies, in addition to
showing the standard applications of RNA-Seq in gene expression
analysis, highlight its usefulness as a technology platform for
SNV detection, though challenges remain [15]. Large consortia
such as The Cancer Genome Atlas (TCGA), have applied both WES
and RNA-Seq, as well as other platforms, to comprehensively cata-
log the cancer genome landscape [16]. The combined WES and
RNA-Seq of the same tumor samples allow for large-scale examina-
tions of somatic mutations in both the DNA and RNA. By applying
these two types of technology together, one can improve the detec-
tion of various mutations, including those in the expressed genes
with different splicing and expression levels, and those in non-
transcribed regions. However, sequencing the same tumor using
both platforms is rarely used in real projects due to the cost and
analysis issues.

A detailed comparison of SNVs called from WES and RNA-Seq
data using the same samples can not only reveal the technical dif-
ferences of these two technologies, but also help us better under-
stand the underlying biological processes that lead to the
ambiguous observations of SNVs at the DNA and RNA levels,
respectively. Such a comparison can provide guidance on the util-
ity of WES and RNA-Seq in SNV detection. So far, there have been
only a few attempts to unveil the advantages and disadvantages
of WES and RNA-Seq in SNV detection. For example, Cirulli et al.
[17] recently compared WGS with RNA-Seq in detecting SNVs
using peripheral blood mononuclear cells from the same subjects.
They highlighted many important aspects for SNV detection such
as expression levels and read depth, but its conclusions are yet to
be validated due to the limited sample size. Another recent review
compared WES and RNA-Seq [18], but it only discussed several glo-
bal features without a systematic comparison of many detailed
features.

In this study, we compared the features of SNVs from WES and
RNA-Seq using a collection of 27 lung tumor and matched normal

samples from the same patients. Through our systematic analyses,
we attempted to unveil the unique features of SNVs from each
platform and determined why variants are missed between these
platforms. Because of the high false calling rate of indels, we only
focused on SNVs. We observed only a small overlap of SNVs
between WES and RNA-Seq, and identified multiple technological
and biological reasons leading to discrepancies in SNV calling.

2. Materials and methods

2.1. Samples and sequencing

Twenty-seven paired tumor and normal lung cancer samples
from patients undergoing lung cancer surgery at Massachusetts
General Hospital were used for this analysis. For all 27 paired
tumor and normal lung cancer samples, we performed both WES
and RNA-Seq experiments. All participants provided written
informed consent. Tumor content was assessed with an average
of 60% across samples. The exome regions were captured using
the Agilent SureSelect Human All Exon kit and then sequenced
on an Illumina HiSeq 2000 platform (paired end, 100 bp) in a
MGH core. We obtained a total of 3,677,811,274 paired-end reads
with an average sequencing depth of 121�. For RNA-Seq, Illumina
Tru-Seq v2 RNA-Seq kit was used for enrichment of mRNA, cDNA
synthesis, and library construction. Then, RNA sequencing was per-
formed on an Illumina HiSeq 2000 platform in the Vanderbilt
Technologies for Advanced Genomics (VANTAGE) core (paired
end, 100 bp). We obtained a total of 4,778,766,598 paired end
reads with an average of 88,495,678 paired end reads per sample.
We used FASTQC to check the quality of reads of all samples
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

2.2. WES data analysis

We mapped the WES reads to the human reference genome
hg19 (GRCh37) using BWA (version 0.5.9c) [19]. In order to further
process the data, we used Picard (version 1.95) [20] to mark dupli-
cate reads and used GATK (version 1.0.3825) to perform local
realignment and recalibration [21,22]. After post-alignment pro-
cessing of the data, we called SNVs with MuTect (version 1.1.4).
To generate mpileup files for each tumor and normal sample, we
used the ‘‘mpileup’’ function in Samtools (version 0.1.19) [23].
Read count values were obtained from the mpileup files using
VarScan2 (version 2.3.5) [24] with the ‘‘readcounts’’ function.
Read count values were split up into categories of values: not cov-
ered (NA), single read (1), low coverage (2–7) and high coverage
(P8).

2.3. RNA-Seq data analysis

We used TopHat2 (version 2.0.0) [25] to map RNA-Seq reads to
the human reference transcriptome and genome (hg19). TopHat2
firstly attempts to map reads to the reference transcriptome and
then for the unmapped reads from the initial transcriptome, it
attempts to map them to the human genome reference. As we
did for WES data, we called SNVs using MuTect (version 1.1.4).
Specifically, we generated mpileup files using Samtools and
obtained read count values using VarScan2. We used Cufflinks
(version 2.1.1) [26] to obtain gene-based FPKM (fragments per
kilobase of exon per million fragments mapped) values for all sam-
ples. FPKM values corresponding to degrees of expression were as
follows: not covered (NA), no expression (FPKM < 1), very low
expression (FPKM 1–5), low to moderate expression (FPKM 5–
20), and high expression (FPKM > 20).
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