
Review Article

Small animal imaging with multi-pinhole SPECT q

Johan Nuyts a,*, Kathleen Vunckx a, Michel Defrise b, Christian Vanhove b

a Nuclear Medicine, Katholieke Universiteit Leuven, UZ Gasthuisberg, Herestraat 49, B3000 Leuven, Belgium
b Nuclear Medicine, Vrije Universiteit Brussel, Belgium

a r t i c l e i n f o

Article history:
Accepted 11 March 2009
Available online 26 March 2009

Keywords:
SPECT
Micro-SPECT
Pinhole
Tomography
Calibration
System matrix
Maximum-likelihood
Maximum-a-posteriori estimation

a b s t r a c t

With Single Photon Emission Computed Tomography (SPECT), images of minute concentrations of tracer
molecules can be acquired, allowing in vivo molecular imaging. For human imaging, the SPECT system
has a modest spatial resolution of 5–15 mm, a large field of view and a high sensitivity. Using multi-pin-
hole SPECT, one can trade in field of view for resolution with preserved sensitivity, which enables the
implementation of a small animal SPECT system with an improved resolution, currently ranging from
0.3 to 2 mm, in a much smaller field of view. The unconventional collimation and the more stringent res-
olution requirements pose problems that are not present in clinical SPECT imaging. This paper discusses
how these problems can be solved to implement micro-SPECT imaging on a rotating gamma camera.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In the last decade, small animal SPECT imaging has made con-
siderable progress, driven by the demands from medical and bio-
logical research. Several approaches have been followed to
implement small animal SPECT imaging. Some groups converted
a clinical gamma camera into a micro-SPECT system using new col-
limators and software, others built a whole new system dedicated
to high resolution imaging of a small object [1]. Most systems rely
on pinhole collimation, although other collimators are being con-
sidered, including rotating slit–slat collimators [2], translating slit
collimators acquiring linograms [3] and rotating slat collimators
[4,5]. All these collimators scan along converging projection lines
resulting in zoomed projections along one or two dimensions,
which creates better usage of the available detectors.

In this paper, only multi-pinhole SPECT is considered. Many dif-
ferent system designs have been proposed, ranging from systems
based on a rotating gamma camera [6–8], a stationary camera with
rotating collimator [9] or a completely stationary camera [10–12].
We focus on multi-pinhole SPECT using a rotating gamma-camera,
although part of what is presented here also holds for stationary
systems.

For accurate reconstruction, the projector and backprojector
must be based on an accurate model for the system geometry. This

can be determined in several ways. The most straightforward one
is to scan a small point source through the field-of-view, and di-
rectly measure the corresponding point spread function for each
of the pinhole apertures [10–12]. This approach is slow and re-
quires sophisticated positioning tools, but is highly accurate and
directly measures the entire system matrix. It is probably best sui-
ted for stationary systems, because they are expected to have a
more stable system matrix. In contrast, rotating systems, in partic-
ular those based on a clinical gamma camera, have many degrees
of freedom and hence can use different system matrices for differ-
ent scans. For those systems, an easier method to determine the
system matrix is useful. In the next section, different approaches
for modelling the system matrix are discussed. Finally, an approach
to compare the effects of a particular choice of system design
parameters on the resolution and noise characteristics of the
reconstructed images is discussed.

2. System matrix model

Single or multi-pinhole SPECT projections using a rotating gam-
ma camera provide incomplete tomographic information [13].
However, in practice, good reconstructions can be obtained with
maximum-likelihood (ML) or maximum-a-posteriori (MAP) recon-
struction. The algorithms use a discrete model to represent the un-
known tracer distribution and the acquired projections; the
relation between the two can be written as

Y ¼ AX or yi ¼
X

j

aijxj; ð1Þ
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where Y is a I � 1 matrix containing the measured counts yi in the
detector elements i = 1 . . . I, X is J � 1 matrix with the reconstruction
values xj, and A is the I � J system matrix. Its element aij is the ex-
pected amount of photons contributed by a unit of activity at position
j to the measurement at detector i. For reconstruction, the elements aij

of the system matrix must be known with good accuracy; system
modelling errors will cause reconstruction artifacts.

As discussed above, a first class of methods consists in directly
measuring each element of the system matrix [10–12]; this direct
method however requires long acquisitions to collect a sufficient
number of counts in each detector i and for each position j of the
source. This limitation can be alleviated by measuring the system
response for a limited number of positions j of the source that sam-
ple the field-of-view; the response for other locations being esti-
mated by interpolation [12]. Fitting a parametric model of the
response to the point source measurement can also improve the
stability of the estimated system matrix. For non-stationary mi-
cro-SPECT systems an additional difficulty with direct methods is
the assumption of a perfect reproducibility of the scanner mechan-
ical motion, required to ensure that the calibrated system matrix
coincides with the actual matrix at the time of the measurement
on the small animal. A potential solution to this problem would
be to measure the system matrix A0 for a single reference position
0 of the camera; during reconstruction the image matrix is pre-
multiplied at each position k = 1, . . .,K of the scanner by a rigid
body transformation matrix Ck determined using the geometric
calibration described in Section 2.1. This amounts to writing

A ¼

A0C0

A0C1

. . .

A0CK

0
BBBB@

1
CCCCA ð2Þ

where K is the number of positions of the camera. Care must be ta-
ken to use a robust interpolation when discretizing the geometric
transformation to define Ck [14]. A similar decomposition of A has
been applied to a micro-PET scanner based on rotating panel detec-
tors [15], though in that case the reference system matrix A0 was
determined by means of a multi-ray method (see below). To our
knowledge, this technique has not been applied in micro-SPECT.

A second class of methods estimates the system matrix ele-
ments using Monte-Carlo simulation [16–18]. Starting from an
accurate description of all components of the detector, a simulated
point source is placed in voxel j of the image matrix, the isotropic
emission of a large number Nj of gamma rays is then simulated and
the transport of each gamma ray towards the collimator, through
the collimator, and finally through the gamma camera is simulated
using for instance the Gate software simulation platform. The frac-
tion of the simulated emission that is detected in detector i then
yields an estimate aij ’ Nij/Nj, where Nij is the number of simulated
detections in detector i. If the Monte-Carlo simulation perfectly
models the system, this method provides a bias-free estimate of
aij, but affected by a relative standard deviation equal to 1=

ffiffiffiffiffi
Nj

p
.

Reducing this standard deviation to an acceptable level while
keeping the computation time—even if it is off-line—acceptable is
the major challenge of the Monte-Carlo method. The use of vari-
ance reduction methods [19] and the ongoing development of a
fast version of the Gate software (http://www.fgate.fr/) might in
the near future make this approach practical for multiple pinhole
SPECT. Note that Monte-Carlo simulation can already now be used
to simulate parts of the system matrix, such as the penetration of
the gamma rays through the edges of the pinhole aperture. The
thus estimated quantities are then used to refine an approximate
analytic model of the system matrix [20]. (A similar approach
may be based on analytic models of the pinhole aperture [21–23]).

Two remarks are in order concerning the two classes of meth-
ods discussed so far, direct measurement and Monte-Carlo estima-
tion. First, these methods yield a system matrix that does not
model the attenuation and scattering of the gamma rays within
the imaged body. This limitation is much less serious for small ani-
mal imaging than for clinical imaging, especially for mice. Attenu-
ation correction, when nevertheless deemed necessary, needs to be
incorporated separately by pre-multiplying the image by an atten-
uation matrix calculated e.g. from a micro-CT scan of the animal.
Note that for multiple pinhole collimation, a separate attenuation
matrix must be used for each camera position and for each pinhole
aperture. Scatter correction can be estimated either from a sepa-
rate, object dependent, Monte-Carlo simulation, or using dual or
triple energy windows based methods. A second issue with direct
measurement and Monte-Carlo estimation is that these methods
are far too time consuming to be applied online. They therefore re-
quire storing the measured or calculated system matrix on disk,
which is difficult in view of the huge size of the matrix: typically
A might be a 106 � 106 matrix. Since object scatter is not included,
this matrix is sparse, which reduces the number of non-zero ele-
ments to be stored to a more practical level. Additional storage
gains may be obtained by considering a single scanner position
A0 as described above, by exploiting symmetries of the scanner,
or other compression techniques similar to those proposed by Reh-
feld et al. [24] for the PET application.

The system matrix measurement time and storage require-
ments can be further reduced by factorisation. A possible factorisa-
tion can be written as

A ’
XM

m¼1

Am
1 Am

2 ð3Þ

Am
1 ½i; i� ¼ Sm

1 ð~iÞ ð4Þ

Am
2 ½i; j� ¼ Sm

2 ð~i; j;GD; hÞ; ð5Þ

where Am
1 are I � I diagonal matrices and Am

2 are I � J matrices,~i 2 R2

represents the 2D detector coordinates of element i and GD is the set
of parameters describing the pinhole geometry and h is the acquisi-
tion angle. The summation is over all M apertures of the multi-pin-
hole system. Sm

1 ð~iÞ models the variation of the sensitivity with the
angle of the projection line. For a particular aperture m, it depends
on the detector position only, and can be measured using a uniform
plane source. Sm

2 models the blurring due to the aperture and the de-
crease of sensitivity with increasing distance to the aperture. The
computation of Sm

2 requires accurate determination of the position
of the apertures with respect to the detector and to the object space.
A method to determine these parameters is described in the next
subsection. The second subsection briefly discusses the collimator
sensitivity measurement, the last subsection presents some resolu-
tion modelling approaches.

2.1. Geometrical calibration

Mathematically, the calibration problem of a pinhole system is
identical to that of a cone beam CT [25,26] or SPECT system [27,28].
Many authors have studied this problem and a series of different
calibration procedures have been proposed. Many of those involve
the acquisition of a calibration phantom consisting of point sources
[29–33]. In these calibration methods, it is assumed that the pro-
jection of a point source through an aperture can be described with
two coordinates, while in a real image, such a projection shows up
as a small blob (Fig. 1). Typically, the mass center of the blob is
computed as an estimate of the intersection of the detector plane
and the line defined by the center of the point source and the cen-
ter of the aperture.

84 J. Nuyts et al. / Methods 48 (2009) 83–91

http://www.fgate.fr/


Download English Version:

https://daneshyari.com/en/article/1994172

Download Persian Version:

https://daneshyari.com/article/1994172

Daneshyari.com

https://daneshyari.com/en/article/1994172
https://daneshyari.com/article/1994172
https://daneshyari.com

