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a b s t r a c t

Determining the genetic factors in a disease is crucial to elucidating its molecular basis. This task is chal-
lenging due to a lack of information on gene function. The integration of large-scale functional genomics
data has proven to be an effective strategy to prioritize candidate disease genes. Mitochondrial disorders
are a prevalent and heterogeneous class of diseases that are particularly amenable to this approach. Here
we explain the application of integrative approaches to the identification of mitochondrial disease genes.
We first examine various datasets that can be used to evaluate the involvement of each gene in mito-
chondrial function. The data integration methodology is then described, accompanied by examples of
common implementations. Finally, we discuss how gene networks are constructed using integrative
techniques and applied to candidate gene prioritization. Relevant public data resources are indicated.
This report highlights the success and potential of data integration as well as its applicability to the
search for mitochondrial disease genes.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

A central task in elucidating the molecular basis of a genetic dis-
ease is identification of the causative defect—that is, the gene or
genes whose mutations result in the disease. This knowledge is
also crucial for developing effective therapeutic strategies that tar-
get the key molecular players rather than simply alleviating the
symptoms. For the majority of Mendelian or suspected Mendelian
diseases, however, the genetic basis remains undetermined [1];
complex diseases driven by multiple genetic and environmental
factors have proven even more challenging [2].

The most common approach used for disease gene identifica-
tion is positional cloning to pinpoint the disease locus. In this ap-
proach, linkage analysis using polymorphic genetic markers
isolates a region of the genome that segregates with the disease
phenotype [3]. Candidate genes are then selected from this region
and screened for mutations in a patient population. This approach
has helped to identify the causative defect of approximately 2400
genetic diseases (Online Mendelian Inheritance in Man (OMIM)
[1,4]). However, its success is limited by the genetic complexity
of most diseases, which exacerbates issues such as inadequate
sample sizes, a lack of informative meiotic crossover events,

genetic heterogeneity, misdiagnosis, epistatis, and incomplete pen-
etrance [2,5–7]. Consequently, positional cloning frequently fails to
identify a disease locus. When a locus is identified, it often contains
more candidate genes than one laboratory can feasibly screen [2].
Theoretically, these candidates can be filtered according to their
biological annotation. In practice, however, annotation is usually
insufficient, and therefore informed prioritization requires a more
complete understanding of gene function.

High-throughput technologies generate extensive data on gene
function: these technologies include genome sequencing, gene
expression arrays, protein–protein interaction screens, RNA inter-
ference, mass spectrometry, and metabolite profiling. An advan-
tage of these technologies is that all measurements in a dataset
are made under uniform conditions, enabling quantitative compar-
ison. Furthermore, data is generated on uncharacterized genes,
providing indications of their function. Orthology allows this data
to be transferred across species, and text mining consolidates
information from decades of single-gene studies. Each genome-
scale approach is biased towards different functional subsets of
genes and prone to certain errors; consequently, overlap among
different datatypes is often limited [8]. In order to effectively pre-
dict gene function, a combined analysis of these datasets is re-
quired to capitalize on their strengths and compensate for their
limitations. Data integration techniques are efficient at extracting
information from multiple datasets [9], and are thus an invaluable
tool for candidate gene prioritization [8,10,11].
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Integrative approaches have been particularly useful in the
functional characterization of mitochondria [11]. In addition to
producing the majority of cellular ATP through respiration, this
organelle plays a central role in metabolism, ion storage, oxida-
tive stress management, signal transduction, antiviral response,
and apoptosis [12,13]. Due to the diverse and fundamental nature
of these processes, mitochondrial dysfunction can impair multiple
organ systems [14]. Mitochondrial diseases primarily affect tis-
sues with high energy requirements (e.g., central nervous system,
muscle, liver) [13,15], and include myopathies, dystrophies, and
neurodegenerative disorders. (Mitochondrial disease descriptions
can be found on the United Mitochondrial Disease Foundation
website www.umdf.org and in the OMIM database [4].) The fre-
quency of mitochondrial diseases is significantly higher than ex-
pected based on the estimated number of protein components
[15]. Mitochondrial diseases follow either maternal, Mendelian,
or complex inheritance since some proteins (13 in human) are
encoded by the mitochondrial genome, while the vast majority
are nuclear-encoded [14,16]. For all of these reasons, it is believed
that many diseases with an unknown molecular basis are mito-
chondrial [12,17].

The identification of mitochondrial disease genes is limited by
the insufficient characterization of the mitochondrial proteome.
To date, only half the 1500 proteins expected to localize within
human mitochondria have been identified [16,18]. Since mito-
chondrial and cellular functions are tightly integrated, a full char-
acterization of mitochondria requires complementing this set
with extraorganellar proteins involved in, for example, mitochon-
drial transcriptional regulation, biogenesis, metabolic branches,
and signalling. Systematic approaches have been directed at iden-
tifying these components (i.e., predicting ‘‘parts lists”) [18–20],
generating interaction networks [21], and developing mathemat-
ical models [22]. Several catalogs of mitochondrial genes have
been predicted (Table 1): the most comprehensive of these is
the MitoP2 database, generated using data integration techniques
[16].

By predicting genes involved in mitochondrial function, data
integration techniques have proven successful at prioritizing can-
didate mitochondrial disease genes. For example, a screen of multi-
ple parameters in the Saccharomyces cerevisiae deletion collection
identified 466 genes whose deletion impairs respiration. The high
conservation of yeast and human mitochondria allowed these
genes to be mapped to their human counterparts and prioritized
as mitochondrial disease candidates [24]. Another study on Leigh
syndrome (a cytochrome c oxidase deficiency) integrated RNA
and protein expression data to select LRPPRC as the top candidate
in the disease locus. Mutations discovered in this gene confirmed
its causative role in the disease [27]. A later integration of eight
datasets established that mutations in MPV17 cause an infantile
mitochondrial DNA depletion disorder, despite the gene’s previous

peroxisomal annotation [19,28]. Such success stories illustrate the
power of integrative genomics.

In this report, we explain how data integration approaches
are used to prioritize candidate genes according to mitochon-
drial function. We describe various datasets that can be used
to determine mitochondrial function, compare data integration
strategies, and present applications of computational network
models.

2. Methods

A typical data integration procedure aimed at prioritizing candi-
date mitochondrial disease genes can be divided into three major
steps (Fig. 1). The first step consists of collecting multiple datasets
on mitochondrial function (previous efforts have used up to 25
[16,19,21]), including a reference set containing known mitochon-
drial genes. In the second step, a discrimination analysis method
[9] is trained on the reference set to classify genes as mitochondrial
or not; it is then used to optimally integrate the input datasets into
a score reflecting the probability that each gene in the genome is
mitochondrial. This score is used in the third step to prioritize can-
didate genes from a disease locus.

2.1. Datasets on mitochondrial function

Here, we highlight several types of data that can be used in
an integrative approach to predict proteins physically residing
in mitochondria and genes functionally related to the organelle.
Both classes of genes must be considered for the study of mito-
chondrial disease, because of the interdependence of mitochon-
drial and cellular processes. Selecting complementary datatypes
will maximize the information captured by the integration.
While the accuracy of input datasets may vary, the discrimina-
tion analysis algorithm will compensate for these variations if
high-quality positive and negative reference sets are supplied.
Each dataset can be evaluated by estimating its sensitivity and
specificity; this is usually done by selecting a threshold and cal-
culating the sensitivity as the fraction of reference proteins cap-
tured, and the specificity as the fraction of negative reference
proteins excluded. Ranges of sensitivity and specificity calculated
in the construction of the human MitoP2 database are indicated
for applicable datasets (otherwise, MitoP2-Yeast calculations are
shown) [16].

2.1.1. Reference set
For the purpose of mitochondrial gene prediction, it is advisable

to build the reference set from genes with definitive mitochondrial
function based on single-gene studies. A good example is the man-
ually-curated reference set of 870 mitochondria-localized human
proteins used to construct the MitoP2 database (Table 1) [16]. In

Table 1
Mitochondrial parts-list databases

Database name Organism Contents URL

MitoP2 [16] Yeast, mouse, A. thaliana,
N. crassa, human

Known and predicted proteins with mitochondrial localization
and/or function; diseases

www.mitop.de

MitoCarta [20] Human, mouse Mitochondria-localized proteins, tissue-specific www.broad.mit.edu/pubs/MitoCarta/
MitoProteome [23] Human Mitochondrial protein sequences from experimental and public databases www.mitoproteome.org
HMPDb Human Proteins involved in mitochondrial biogenesis, function; diseases bioinfo.nist.gov/hmpd
YMPD Yeast Proteins with mitochondrial localization and/or function bmerc-www.bu.edu/projects/mito
YDPM [24] Yeast Mitochondria-specific yeast deletion collection phenotypes, proteomics

and gene expression
deletion.stanford.edu/YDPM

MitoDrome [25] Fruit fly Nuclear-encoded mitochondrial proteins www2.ba.itb.cnr.it/MitoDrome
AMPDB [26] Arabidopsis Predicted and verified mitochondria-localized proteins www.plantenergy.uwa.edu.au/ampdb/
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