ARTICLE IN PRESS

Molecular Genetics and Metabolism xxx (2015) xxx-xxx

YMGME-05946; No. of pages: 6; 4C:

Contents lists available at ScienceDirect

Molecular Genetics and Metabolism

journal homepage: www.elsevier.com/locate/ymgme

Biotinidase deficiency should be considered in individuals exhibiting myelopathy with or without and vision loss

Barry Wolf*

Department of Research Administration, Henry Ford Hospital, Detroit, MI 48202, USA Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA

ARTICLE INFO

Article history: Received 19 July 2015 Received in revised form 30 August 2015 Accepted 30 August 2015 Available online xxxx

Keywords: Myelopathy Biotinidase Biotinidase deficiency Biotin-responsive Spinal disorder Spastic paraplegia Spastic tetraplegia Vision loss Scotoma

ABSTRACT

Multiple symptomatic children with biotinidase deficiency have exhibited spastic para- or tetraplegia due to myelopathy with and without vision loss. Although this has been a feature of what has been designated as delayed onset-biotinidase deficiency, myelopathy is likely also on the continuum of clinical features seen in younger children who have had these features attributed to dysfunction of the upper brain rather than of the spinal cord. Because many countries are still not screening their newborns for biotinidase deficiency, the disorder should be included in the differential diagnosis of individuals with myelopathic symptoms. Many of these children have gone weeks to months before they were correctly diagnosed with biotinidase deficiency will undoubtedly facilitate prompt treatment, increase the possibility of complete recovery and avoid potential residual permanent neurological damage. Newborn screening for biotinidase deficiency would avoid the delay in the diagnosis and treatment of individuals who otherwise may present with myelopathic or other neurological symptoms.

© 2015 Elsevier Inc. All rights reserved.

Contents

2. 3.	Clinical features and epidemiology
Ackr	Conclusion

Since 1982, almost all individuals with the juvenile or late-onset form of multiple carboxylase deficiency have been shown to have biotinidase deficiency [1]. Biotinidase deficiency is an autosomal recessively inherited disorder in which the vitamin biotin is ineffectively recycled, resulting in secondary biotin deficiency which in turn causes multiple carboxylase deficiency [2,3]. Fortunately, the disorder can be effectively treated by administering these individuals' pharmacological doses of oral biotin. Although the symptoms can markedly improve, some, such as optic atrophy, hearing loss and some aspects of cognitive

http://dx.doi.org/10.1016/j.ymgme.2015.08.012 1096-7192/© 2015 Elsevier Inc. All rights reserved. disabilities, may be irreversible. For this reason, newborn screening of biotinidase deficiency has been incorporated into the newborn screening programs of all the states in the United States and in many countries [4,5]. Outcome evidence supports that identification of children with the enzyme deficiency at birth and their treatment with biotin prior to the development of symptoms, does, in fact, prevent these children from developing symptoms [6,7].

There is, however, a disadvantage when there is a relatively short time from the discovery of a disorder to its incorporation into newborn screening programs; there is a lack of information about the long-term natural history of the disorder. Because there are still countries that have chosen not to screen their newborns for biotinidase deficiency,

Please cite this article as: B. Wolf, Biotinidase deficiency should be considered in individuals exhibiting myelopathy with or without and vision loss, Mol. Genet. Metab. (2015), http://dx.doi.org/10.1016/j.ymgme.2015.08.012

^{* 498} Dunston Rd., Bloomfield Hills, MI, USA. *E-mail address:* bwolf1@hfhs.org.

Age of first symptoms	Age of diagnosis	Neurological symptoms	Head MRI/CT	Spinal findings/MRI	EMG/NCV	Ophthalmological symptoms/VEP	Auditory/BAEP issues	Residual neurological damage after biotin therapy	Enzyme activity (units/ml serum) or % of mean normal	Mutation	Reference
16 months	19 months	Hypotonia, proximal weakness, bulbar problems, stridor, swallowing issues, choking	N	Necrotizing lesions in posterior columns. Edema in white matter of the anterior columns. Astrocytosis in the anterior horns of cord.	NT	Finer pigmentation of the retinae, optic atrophy, abnormal VEP	NT	Died	Parents consistent with heterozygotes	NT	[11]
22 months	22 months	Spastic paresis, neuropathic bladder	ABN	Abnormal signal in the inferior brainstem and upper cervical, abnormal signal extending down through the medulla down to the spinal cord to the conus	Ν	Aptic atrophy/ABN VEP	ABN	Walking with residual speech and cognitive impairment and hearing loss	0.5	NT	[14]
1 year	3 years	Lethargy, fatigue, abnormal gait, hypotonia	NT	Medulla and cervical spinal edema and demyelination	NT	Ν	NT	Mild developmental delays	0.1	NT	[20]
3 years	3 years	Abnormal gait, fatigue, ascending weakness, hypotonia, decreased strength in the lower extremities, muscle atrophy, hyperreflexia, decreased responsive to pain and ankle clonus	ABN	Intramedullary nonenhancing cervicothoracic cord lesion and abnormal intensity in the cervicothoracic spinal cord	NT	Normal VEP	ABN	Residual spasticity in the lower limbs with improvement of spinal lesions	0	p.1339C>T; p.H447Y/ p.1339C>T; p.H447Y	[13]
1 1/2 years	3 years	Hypotonia, truncal and head titubations, dysmetria of the extremities, ataxia, brisk reflexes	NT	Diffuse abnormal signal in the white matter from the cervicomedullary junction to the conus and mild cervical cord enlargement.	Ν	NT	NT	Mild paraparesis	0.09	NT	[12]
3 years	3 years	Upper and lower extremity weakness, brisk reflexes, stridor	NT	Diffuse edema and abnormal signal between the cervicomedullary junction and the 5th thoracic vertebra.	NT	Normal VEP	NT	Improvement, but short-term follow-up	0.13	NT	[15]
4 years	4 years	Slurred speech, hyperventilation, difficulty walking, ataxia, spastic tetraparesis, brisk reflexes	Ν	Cervical spinal cord was enlarged with hyperintense central T2-weighted signal	NT	Conjunctivitis	ABN	Cervical spine normalized, but slight right arm weakness and brisk tendon reflexes, bilateral hearing loss	0	NT	[16]
4 1/2 years	4 1/2 years	Spastic paraparesis, motor weakness, ankle clonus, dyspnea	?	Spinal cord edema, T2-hyperintensity of the posterior pons and medulla	NT	Normal optic disks	NT	Walked independently after 6 weeks and abnormal BAEP	0%	NT	[18]
5 years	7 years	Abnormal gait, fatigue, quadraplegia, predominantly the lower extremities, no strength in the lower limbs, proximal upper	ABN	Hyperintensity of the dorsal brainstem and spinal cord to the lower thoracic vertebra	ABN	ABN	Ν	Residual spasticity	6.8%	c.133C>T; p.H447Y/ c.133C>T; p.H447Y	[19]

Ω

Ζ

 \mathbf{O} (n) Download English Version:

https://daneshyari.com/en/article/1998262

Download Persian Version:

https://daneshyari.com/article/1998262

Daneshyari.com