Nitric Oxide 41 (2014) 4-10

Contents lists available at ScienceDirect

Nitric Oxide

journal homepage: www.elsevier.com/locate/yniox

Invited Review The physiological role of hydrogen sulfide and beyond

Hideo Kimura*

National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan

ARTICLE INFO

Article history: Available online 1 February 2014

Keywords: H₂S Polysulfides Bound sulfane sulfur Sulfhydration Sulfuration TRP channels

ABSTRACT

Hydrogen sulfide (H₂S) has been considered to be a physiological mediator since the identification of endogenous sulfides in the mammalian brain. H₂S is produced from L-cysteine by enzymes such as cystathionine β -synthase (CBS), cystathionine γ -lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3MST), and cysteine aminotransferase (CAT). CSE and CAT are regulated by Ca²⁺. At steady-state low intracellular concentrations of Ca²⁺, CSE and the 3MST/CAT pathway produce H₂S. However, after intracellular concentrations of Ca^{2+} increase in stimulated cells, the production of H_2S by these enzymes decreases. We recently identified a fourth pathway, by which H₂S is produced from D-cysteine by the enzymes D-amino acid oxidase (DAO) and 3MST. This pathway is mainly localized in the cerebellum and the kidney. The production of H₂S from D-cysteine is 80 times more efficient than that from L-cysteine in the kidney, and the administration of p-cysteine to mice ameliorates renal ischemia-reperfusion injury more effectively than L-cysteine. These results suggest that D-cysteine might be used to treat renal diseases or even increase the success of kidney transplantation. We found that H₂S-derived polysulfides exist in the brain and activate transient receptor potential ankyrin-1 (TRPA1) channels 300 times more potently than H₂S. Although TRPA1 channels mediate sensory transduction and respond to a variety of stimuli, including cold temperature, pungent compounds and environmental irritants, their endogenous ligand(s) has not been identified. The sulfane sulfur of polysulfides is a reactive electrophile that is readily transferred to a nucleophilic protein thiolate to generate the protein persulfide or bound sulfane sulfur by sulfhydration (as referred to as sulfuration). The bound sulfane sulfur-producing activity of polysulfides is much greater than that of H₂S. This review focuses on the physiological roles of H₂S and H₂S-derived polysulfides as signaling molecules.

© 2014 Elsevier Inc. All rights reserved.

Contents

Introduction. H ₂ S production H ₂ S-producing enzymes . Cofactors for 3MST . The activities of CSE and CAT are regulated by Ca ²⁺ . Production of H ₂ S from D-cysteine. The DAO/3MST pathway. Localization of the DAO/3MST pathway in the brain and the kidney . Therapeutic potential of D-cysteine . Formation of bound sulfane sulfur by sulfhydration (sulfuration).	. 5 . 5 . 6 . 6 7 7 . 8
	. 8
Conclusion	. 8
References	. 9

* Fax: +81 42 346 1755. E-mail address: kimura@ncnp.go.jp

Introduction

The discovery of endogenous sulfides in the mammalian brain first suggested that hydrogen sulfide (H₂S) might have a physiological role(s) [1–3]. We found that H₂S is produced by cystathionine β -synthase (CBS) and that H₂S facilitates the induction of hippocampal LTP by enhancing the activity of N-methyl-D-aspartate (NMDA) receptors [4]. Subsequently, we found that H₂S is produced by cystathionine γ -lyase (CSE) in the thoracic aorta, portal vein, and ileum, and that H₂S relaxes these smooth muscles in synergy with NO [5–7]. Recently, the minimal nitrosothiol HSNO was found to be produced in human umbilical vein endothelial cells (HUVEC) [8]. Moreover, NOSH compounds, which release both H₂S and NO, were found to have potent anti-cancer activity as well as anti-inflammatory effects [9]. The synergistic interaction between H₂S and other molecules, including NO, implies the therapeutic potential of these compounds.

Given that CSE was not found in the brain, CBS was thought to be a unique H₂S-producing enzyme in the brain. However, we detected H₂S-producing activity in the brain of CBS-knockout mice. This led to the identification of a pathway, which is regulated by 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase (CAT) [10]. Based on our observation that brain homogenates produce H₂S from p-cysteine (a negative control of L-cysteine) we identified a novel pathway that comprises p-amino acid oxidase (DAO) and 3MST [11].

Given that H_2S was initially considered to be a toxic gas, its cytoprotective effects were initially overlooked. Later, we and others found that H_2S protects the neurons from oxidative stress by facilitating the production of glutathione, a major intracellular antioxidant, and by scavenging reactive oxygen species (ROS) in mitochondria [12–15]. In the retina, H_2S protects photoreceptor cells from light-induced degeneration by suppressing the excessive elevation of intracellular Ca²⁺ concentrations [16]. H_2S also regulates endoplasmic reticulum (ER) stress and facilitates the translocation of Nrf2 and NF- κ B into the nucleus to up-regulate the transcription of antioxidant and antiapoptotic genes, respectively [17–19].

The recent re-evaluation of the endogenous levels of H₂S revealed them to be much lower than previously estimated [20-22]. Nevertheless, it confirmed the existence of H₂S in tissues. The K_m values of H₂S-producing enzymes are greater than the endogenous concentrations of their substrate cysteine. Therefore, the quantity and rate of production of H₂S are not adequate to induce physiological responses. To compensate for the inadequate production, H₂S is stored as bound sulfane sulfur, which may release H₂S when cells are stimulated [21]. On the other hand, H₂S is oxidized to polysulfides (H_2S_n) (n = 2-7), which are more stable than H₂S. We recently found that polysulfides are derived from H₂S in the brain, and that the activation of TRPA1 channels by polysulfides is approximately 300 times more potent than parental H₂S [23]. Although TRPA1 channels are activated by various stimuli, including other pungent substances, their endogenous ligand has not been identified. Polysulfides are potential ligands for TRPA1 channels.

H₂S production

*H*₂*S*-producing enzymes

During the 1950s–1970s, CBS, CSE, 3MST, and CAT were shown to produce H_2S in vitro [24–26]. However, rather than being recognized as a physiologically active molecule in itself, H_2S was initially thought of simply as a byproduct of metabolic pathways or as a marker for the evaluation of enzyme activity.

5

CBS is expressed in several organs and tissues, such as liver, kidney, brain, ileum, uterus, placenta and pancreatic islets [5,27–29]. CBS produces H₂S from cysteine via a β -elimination reaction, and more efficiently via a β -replacement reaction in which cysteine is condensed with homocysteine [30]. The production of H₂S by CBS is enhanced by S-adenoxylmethionine, an allosteric activator of CBS, and suppressed by NO and CO [4,31,32].

CSE is expressed in the liver, kidney, thoracic aorta, ileum, portal vain, uterus and placenta, but is weakly detected in the brain [5,27–29,33,34]. Under normal conditions, α , β -elimination of cysteine generates H₂S by CSE. The high concentrations of homocysteine caused by homocysteinemia result in the α , γ -elimination and γ -replacement reactions of homocysteine becoming the dominant source of H₂S production [35].

Although CBS and CSE were thought to be the major H_2S -producing enzymes, we found that brain homogenates prepared from CBS knockout mice still produce H_2S . This observation suggested that other H_2S -producting enzymes are present. These enzymes were identified as 3MST and CAT [10,36–38]. 3MST produces H_2S from 3-mercaptopyruvate (3MP), which is, in turn, produced from cysteine and α -ketoglutarate by CAT. Whereas CBS and CSE are localized to the cytoplasm, 3MST is mainly localized to the mitochondrial matrix, with an optimal pH of approximately 8 [39]. Unlike the cytosol, mitochondria contain sufficiently high concentrations of cysteine (approximately 1 mM) to enable the 3MST/CAT pathway to produce H_2S [40,41].

Cofactors for 3MST

Three pathways produce H₂S from L-cysteine. These are defined by the enzymes CBS, CSE, and 3MST, which acts together with cysteine amino transferase (CAT), which is identical to aspartate amino transferase (AAT) [10,42]. Whereas 3MST requires a reducing substance such as dithiothreitol (DTT; the endogenous counterpart of which has not been identified) to produce H₂S, CBS and CSE do not require reductant. For this reason 3MST has not been recognized as an H₂S-producing enzyme [43]. The observation that 3MST can interact with thioredoxin suggested that thioredoxin might be an endogenous reducing substance that enables 3MST to produce H₂S [44]. The presence of thioredoxin, which exists at a concentration of approximately 20 µM in cells, increased the production of H₂S by 3MST by 10-fold [45,46]. Another endogenous reducing substance, dihydrolipoic acid (DHLA), which exists approximately 40 µM in the brain [47,48], increased the production of H₂S by 3MST by 3-fold [46]. The other endogenous reducing substances, such as cysteine, GSH, NADPH, NADH and CoA, have little effect on H₂S production by 3MST. Thioredoxin, DHLA and DTT have negative redox potentials in the range from -0.22 to -0.33 V, but there is no correlation between these potentials and the production of H₂S [46,49–52]. Among these substances, DTT and DHLA are dithiols and thioredoxin has two cysteine residues at its active site. Dithiols may be critically required for these substances to associate with 3MST to produce H₂S. A possible mechanism for the production of H₂S is that 3MST receives sulfur from 3MP to produce 3MST-persulfide, which is transferred to a thiol of thioredoxin or DHLT to produce thioredoxin- or DHLA-persulfide. The remaining thiol of thioredoxin or DHLA reduces the persulfide to release H₂S [46]. Similar results for thioredoxin as an endogenous reducing substance were shown by Banerjee and colleagues [53], and for DHLA for the production of H_2S [54].

3MST is localized in both mitochondria and the cytosol, with two forms of CAT known as mitochondrial CAT and cytosolic CAT. Therefore, this pathway can produce H_2S both in the mitochondria and the cytoplasm. Considering the fact that the concentrations of cysteine in the cytoplasm are 0.15–0.25 mM and those in mitochondria are 0.7–0.99 mM, it seems likely that most of Download English Version:

https://daneshyari.com/en/article/2000672

Download Persian Version:

https://daneshyari.com/article/2000672

Daneshyari.com