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a b s t r a c t

Binary fluid mixtures display a wide array of fluid phase behavior ranging from simple vapor-liquid
equilibrium diagrams to more complicated topology like azeotropy and heteroazeotropy. As a first
step towards understanding the phenomena of equilibrium of binary molecular systems, the properties
of binary monoatomic fluids have been studied in this work. An additional simplification made in this
work is that of a symmetrical binary system where all similar molecules interact via the hard-core
Yukawa (HCY) potential, u(r), while the dissimilar molecules interact via a potential, du(r) where d is a
scalar parameter. The value of d here is 0.75, which leads to the dissimilar molecules showing a tendency
to dislike one another and the resulting phase diagram is such that the mixing-demixing line intersects
the vapor-liquid equilibrium curve away from the vapor-liquid critical point. The effect of the variable
potential range parameter of the HCY potential on the topology of the phase diagrams is investigated
using grand canonical transition matrix Monte Carlo simulations and the conditions of temperature and
pressure at which the system exhibits azeotropy and heteroazeotropy are ascertained. We find that the
densities of the mixtures, as predicted by our simulation at equimolar concentrations, are in close
agreement with the self-consistent Ornstein-Zernike approximation results of Sch€oll-Paschinger and co-
workers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Knowledge and understanding of fluid phase behavior is
important from an industrial perspective as this enables the design
and optimization of various separation processes. The phase dia-
grams of complex mixtures such as colloidal suspensions, micellar
and protein solutions, and simple charged fluid mixtures are very
rich and characterized by multiple coexistence lines [1]. Binary
fluid mixtures display a wide range of phase diagram topology
ranging from simple vapor-liquid equilibrium to more complicated
topology like azeotropy and liquid-liquid equilibrium depending
upon the interactions between the different species present in the
mixture. This is primarily due to the fact that there is an additional
degree of freedom in the form of the number of molecules of the
second species and the result is a more complex phase behavior
than observed in single component systems. Different phase dia-
grams arise due to the nature of the interactions at molecular level
between similar and dissimilar species such as the range and the

strength of these interactions. Hence, a study of such binary sys-
tems at a molecular level is important as it reveals the molecular-
level intricacies involved in the observed phase behavior. As a
first step towards understanding the complex fluid phase behavior
exhibited by binary molecular systems, we have studied the rela-
tively simple monoatomic binary systems with none of the
complicated internal molecular parameters. An additional simpli-
fication adopted in this paper is that of a symmetrical binary fluid
(SBF) where additional complications are eliminated by assuming
that the relative size and the strength of interactions of molecules
belonging to similar species are identical while the strength of in-
teractions between molecules of dissimilar species differ, thereby
generating a symmetric phase diagram. Theoretical investigations
and molecular simulations of SBFs have revealed a wide repertoire
of correlations between macroscopic phenomena and molecular
interactions. One of the first studies in this field was conducted by
van Konynenburg and Scott [2] in their landmark paper on the
investigation of critical lines and phase diagrams for binary van der
Waals fluids. In the paper [2], eight types of phase diagram topol-
ogies have been deduced on the basis of mean field van der Waals'
equation of state and van der Waals' mixing rules for the* Corresponding author.
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parameters in the van derWaals' equation of state. Dieters and Pegg
[3] have studied binary fluid mixtures using the Redlich-Kwong
equation of state and quadratic mixing rules. Kraska and Deiters
[4] have further extended this study using the Carnahan-Starling-
Redlich-Kwong equation of state. With the advancement of liquid
state theory, researchers have been able to discern the interplay of
various forcefield parameters as well as the imposed thermody-
namic fields on the phase behavior topology of various binary
systems. Anisimov et al. [5] were able to calculate the thermody-
namic and transport properties of binary fluid mixtures near crit-
ical points by mapping three physical field variables to the two
scaling field variables of Ising-like systems. Walker and Vause [6]
explained the closed loop behavior in two component systems
using a lattice model of fluid mixtures. For the specific case of a SBF,
other phase diagram topologies appear which pave the way for a
more generic description of phase diagram topologies and their
dependence upon the intermolecular potential energy parameters.
Wilding et al. [7] employed mean-field calculations and multi-
canonical Monte Carlo simulations to determine the phase dia-
grams of the square-well SBF at different values of the force field
parameters and under different thermodynamic conditions. Their
results revealed that there are three different types of phase dia-
gram topologies depending on the value of d, the ratio by which the
interaction betweenmolecules of dissimilar species differ from that
between molecules of similar species. Different values of d dictate
the location of the consolute end points (CEP) of the liquid-liquid
equilibria. The CEP is the point at which the mixing-demixing
transition line or l-line intersects the vapor-liquid phase enve-
lope. If this line intersects the liquid-vapor equilibrium curve at a
point far away from the critical point, then the phase diagram
changes fromvapor-liquid equilibrium (VLE) azeotropic behavior to
a vapor-liquid-liquid equilibrium (VLLE) heteroazeotropic behavior.
In case the demixing line intersects the vapor-liquid equilibrium
curve close to the critical point, there occurs a coupling between
the composition and the density fluctuations close to the vicinity of
the both the liquid-liquid and liquid-vapor critical points; and the
result is a common tricritical point, a point where three phases (the
vapor and the demixed liquid phases) simultaneously become
critical. A third kind of phase diagram topology is also seen where
the vapor occurs in equilibrium with a single liquid phase termi-
nating at the critical point and the single liquid phase exists in
equilibrium with two demixed liquid phases albeit at a different
density, with all the coexisting phases terminating at a tricritical
point.

Theoretical investigations of binary mixtures interacting via the
hard-core Yukawa (HCY) potential have been extensively carried
out by researchers worldwide using the mean spherical approxi-
mation (MSA) and hyper-netted chain (HNC) liquid state theories
[8e14]. Caccamo et al. [1] have determined the phase diagrams of
binary mixtures of symmetrical HCY fluids with values of the
interaction strength ratio, d¼ 0.7 and d¼ 0.9, using Gibbs ensemble
Monte Carlo (GEMC) simulations, semi-grand canonical Monte
Carlo simulations and modified HNC liquid state theory. At d ¼ 0.7,
the authors have determined that a cross-over occurs from VLE at
low densities to liquid-liquid equilibrium (LLE) at high densities at
the critical end point of the mixture, consistent with other studies
in literature on fluids interacting via different potential models
[2,15]. Binary symmetric fluid mixtures interacting via the HCY
potential have also been investigated by Schӧll-Paschinger et al.
[16] using both simulation and theory. The theoretical approach
applied SCOZA which is a solution to the Ornstein-Zernike (OZ)
equation with a mean spherical approximation (MSA) type closure
which takes into account thermodynamic state functions that have
been determined using thermodynamic self-consistency. Grand-
canonical Monte Carlo (GCMC) simulations have been used to

confirm the accuracy of the theoretical calculations. The presence
of the three types of phase diagrams was confirmed by both the
theory and subsequent simulations. In a later publication [17],
Schӧll-Paschinger and Kahl have reported the presence of a fourth
type of topology which occurs when the l-line intersects the vapor-
liquid coexistence curve at a density lower than that corresponding
to the VLE critical point which leads to the presence of a demixed
liquid-demixed liquid critical point. All the studies mentioned
above have been completed for a highly symmetrical case where

Fig. 1. Contour plot of the logarithm of the probability distributions for ks ¼ 1.8 at a
reduced temperature (kT/ε) of 0.90 in a cubic volume with box length ¼ 7.5s. The plot
represents data at values of the chemical potentials such that the values of the volumes
under the three peaks enclosed by the contour line ¼ �30 are equal. This corresponds
to the heteroazeotropic point in Fig. 4(a).

Fig. 2. Plot of reduced temperature (kT/ε) vs. the liquid and vapor phase reduced
densities (rs3) at azeotropic/heteroazeotropic points for three different values of ks
(1.8, 2.4 and 3.0). The solid line is the result obtained for ks ¼ 1.8 using SCOZA analysis
by Sch€oll-Paschinger et al. [16].
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