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a b s t r a c t

To ensure the quantitative precision and reliability of molecular simulations, force field models of mo-
lecular fluids need to be adjusted to e.g. experimental data. An optimal agreement for different prop-
erties is often not achieved by a single model parametrization. Applying multicriteria optimization, based
on the evaluation and analysis of the Pareto set, solves this problem. The Pareto set contains all optimal
compromises between multiple conflicting objectives. Its computation and suitable visualization enables
the end user to freely choose a model parametrization, tailored to his particular application scenario.

We apply multicriteria optimization to the two-center Lennard-Jones plus point-quadrupole model
class (2CLJQ), which has four adjustable parameters. The Pareto set is determined and analyzed for ten
real fluids: Ethane, ethylene, acetylene, fluorine, chlorine, bromine, perfluoroethylene, perchloroethy-
lene, nitrogen, and oxygen. Thereby, two multicriteria optimization scenarios are considered, based on
two criteria (saturated liquid density and vapor pressure) and three criteria (saturated liquid density,
vapor pressure, and surface tension), respectively. It is shown that literature models for these fluids can
be further improved in these criteria. We visualize our results by self-organizing patch plots, which
facilitate the representation of the entire Pareto set and its corresponding model parametrizations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Molecular simulations of fluids contribute to solving problems
in physics, biology, chemistry, and engineering. They rely on the
choice of suitable molecular force fields. Adjusting the force field
parameters, aiming at an accurate representation of different
thermophysical properties, is a multicriteria optimization problem.
Different properties normally cannot simultaneously be optimized
without a trade-off, i.e. the objectives are conflicting and a single
optimal solution cannot be determined. The goal of multicriteria
optimization is to identify the Pareto set, which represents best
possible compromises between conflicting objectives. A solution is
defined to be Pareto optimal if a further improvement in one
objective can only be achieved at the expense of at least one other
objective. The Pareto set is a subset of all feasible solutions in the
objective space. To each Pareto optimal point in the objective space
corresponds one parametrization in the parameter space, repre-
senting a Pareto optimal model. Hence, identifying the Pareto set

does not yield one model, but a set of optimal models fromwhich a
user can choose the one best fitting a particular application
scenario.

It is attractive to use multicriteria optimization for the
parametrization of molecular models. In a preceding work, the
Pareto optimal Lennard-Jones models for argon andmethane were
identified by brute force evaluation of 200� 200 parameter
combinations [1]. The same procedure was used byWerth et al. [2]
to identify Pareto optimal parameters for representing carbon
dioxide with a two-center Lennard-Jones plus point-quadrupole
force field model. The grid in the parameter space employed by
Werth et al. [2] was 60� 60� 60� 60. This brute force enumera-
tion is only feasible for scenarios in which the evaluation of the
objective functions is not expensive and the number of parameters
is not high. This is rarely the case for optimizations of molecular
models. A more efficient strategy to approximate the Pareto set is
necessary. Apart from Refs. [1] and [2], we are only aware of one
other work in which multicriteria optimization was used in the
context of developing force field models. Mosthagim et al. [3]
developed Pareto sets by Particle Swarm Optimization with a
focus on intramolecular potentials fitted to ab initio data.* Corresponding author.
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In the present work, we determine the Pareto set by a combi-
nation of the sandwiching and hyperboxing algorithm [4]. The al-
gorithm aims at efficiently approximating the Pareto set for a
predefined approximation quality.

Multicriteria optimization is applied to the parametrization of
the two-center Lennard-Jones plus point-quadrupole (2CLJQ) po-
tential model in two optimization scenarios. The 2CLJQ potential
model has four parameters, which are adjusted to optimize first
two and then three different objective functions. However, for both
optimization tasks, the Pareto optimal parameter sets are evaluated
regarding four functions. They describe the quantitative agreement
between the simulation data and the experimental data for the
saturated liquid density, the vapor pressure, the surface tension,
and the critical temperature. For simplicity, we refer to the satu-
rated liquid density only as liquid density in the following.

In the first optimization scenario the conflicting objective
functions for the liquid density and the vapor pressure are used
(two-criteria scenario). Previous work by Fischer and collaborators
[5,6] shows that model parameters adjusted to the liquid density
and the vapor pressure are suitable to predict e.g. caloric or further
thermodynamic properties. In the second scenario, the surface
tension is included as an example for a third objective function
(three-criteria scenario). For both scenarios the Pareto set is deter-
mined for ten different fluids: ethane (C2H6), ethylene (C2H4),
acetylene (C2H2), fluorine (F2), chlorine (Cl2), bromine (Br2), nitro-
gen (N2), oxygen (O2), perfluoroethylene (C2F4), and perchloro-
ethylene (C2Cl4). The obtained Pareto optimal solutions are also
compared to the performance of molecular models from the liter-
ature. The discussed literature models were developed on the basis
of results of direct numerical molecular simulations using MD or
MC methods. Molecular models obtained by theoretical studies as
e.g. perturbation theory [7,8] were not taken into account.

In the main text, first the results for the two-criteria scenario are
discussed for all fluids. The results for the three-criteria scenario are
then discussed for acetylene and used for a comparison with those
of the two-criteria scenario as a representative for all studied fluids.
Finally, a brief summary of a comparison between the two- and
three-criteria scenario for all fluids is given. The Pareto optimal
solutions for both optimization tasks for all studied fluids can be
found in the Supplementary Material.

We also introduce a novel technique for simultaneously visu-
alizing the Pareto set in the objective space, the corresponding
Pareto optimal model parameter space as well as additional func-
tions, which were not included in the multicriteria optimization as
an objective function. It is based on self-organizing maps (SOM),
which are also referred to as Kohonenmaps in the literature.With a
SOM an interpolation of a high-dimensional data set can be dis-
played in low-dimensional maps [9,10]. Hunger and Huttner [11]
used SOM to gain insight into the dependence of their single-
criteria optimization on parameters specifying a force field
description for tripod metal templates. SOMs have been used
before in a few studies in the literature to represent results from
multicriteria optimizations [12,13]. The drawback of SOMs is that
they do not only represent the given input data set, but an inter-
polation, resulting in an approximation of the data set. Thus we
enhanced the SOM and used it as a projection method for a given
data set, in our case the Pareto set. Furthermore, by combining
them with Voronoi diagrams [14], we achieved that only the exact
Pareto optimal solutions are displayed. We refer to the represen-
tation as self-organizing patch plot (SOPP). It is a visualization spe-
cifically adapted to display any Pareto set.

By displaying the Pareto sets with the novel SOPP technique, a
comprehensive overview over the optimal solutions is gained. It
enables assessing how good simultaneous representations of
different properties of pure fluids by the 2CLJQ model can be

without having to refer to only one single solution for each studied
fluid. As many pure fluids are studied and similar results are ob-
tained, the present statements can probably be generalized: They
allow an assessment of how good the 2CLJQ model can be.

The methods presented have a much wider scope. They can be
used for parametrizing molecular force fields in general and well
beyond for parametrizing any thermodynamic model.

2. Multicriteria optimization

A multicriteria optimization problem is characterized by mul-
tiple objective functions fi(x) which have to be minimized
simultaneously:

min f xð Þ ¼ f1 xð Þ;…; fr xð Þð Þ2ℝr : (1)

They span the objective space ℝr and depend on the decision
vector x2ℝq where ℝq is the design space. The solution to such a
problem is a set of best compromises: For any improvement in a
single objective fi(x), a decline in at least one other objective fk(x),
isk has to be accepted. The set of all best compromises is called the
Pareto set. In the context of force field parametrization the design
space is spanned by the parameters describing the model. Thus we
refer to it as parameter space in the subsequent text. Mapped to
each point in the parameter space, hence, to each model, is one
point in the objective space.

For more information on multicriteria optimization see e.g.
Refs. [15e17].

2.1. Sandwiching and hyperboxing algorithm

The Pareto set is a subset of all feasible points in the objective
space and needs to be approximated by a suitable numerical
strategy. In the present work the sandwiching and hyperboxing
algorithm is used for determining suitable approximations of the
Pareto sets. This algorithm is basically taken from Ref. [4].

By scalarizations of the objective functions, single criterion
optimization problems are obtained. The solutions for these sca-
larizations belong to the Pareto set. Thus by solving several single
criterion optimizations a pointewise approximation of the Pareto
set is obtained. The sandwiching and hyperboxing algorithm is
used to subsequently identify suitable scalarizations to efficiently
approximate the Pareto set. The algorithm focuses on exploring the
Pareto set in regions, where the curvature of the Pareto set is
highest and starts by identifying the extreme compromises, i.e. at
first the minimum of each objective function is located. The sand-
wiching algorithm then alternately finds inner and outer approxi-
mations for the Pareto set, thereby assuming the Pareto set is
convex. The sandwiching algorithm is applied, until a specified
approximation quality is reached. Then, if regions of non-convex
behavior are identified, the non-convex regions are approximated
with the hyperboxing algorithm. The sandwiching algorithm uses
the weighted sum scalarization (see e.g. Ref. [17]), whereas the
hyperboxing algorithm uses a scalarization proposed by Pascoletti
and Serafini [18]. A brief sketch of the concept of the sandwiching
and hyperboxing algorithm in a chemical engineering context can
be found in Bortz et al. [19]. To solve the single criterion optimi-
zation tasks with which the Pareto set is approximated, we employ
the Quasi-Newton solver NLPQLP of Schittkowski [20].

During the multicriteria optimization numerical problems may
occur. Depending on the choice and settings of the single criterion
solver, the sandwiching and hyperboxing algorithm may identify
solutions as Pareto optimal, which are not. Thus we additionally
check the Pareto sets for Pareto optimality by comparing the so-
lutions to each other and sort out solutions, which are not Pareto
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