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a b s t r a c t

The thermodynamic properties of a dipolar square-well fluid in zero external magnetic field are studied
using theory and simulations. The theory is based on the virial expansion of the Helmholtz free energy.
The second and third virial coefficients are calculated as functions of the dimensionless temperature T*,
the reduced dipolar interaction parameter �, and the potential well width �. The formulas are compared
to results from Mayer-sampling calculations. The analytical expressions for the virial coefficients are
incorporated in to various forms of virial expansion for the Helmholtz free energy and the equation of
state. Thermodynamic functions are tested against results from Monte Carlo simulations for subcritical
vapor–liquid transition parameters T* ≥ 5 and 10.5; � ≤ 4; � ≤ 2 over the range of the particle volume
fraction ϕ ≤ 0.4. Finally, predictions of the critical parameters for the condensation transition are obtained
on the basis of the virial expansion of the Helmholtz free energy and compared with computer-simulation
results and the theories available in the literature. Although the critical parameter values formally lie
beyond the applicability of the theory developed in this work they fall in the range of values previously
obtained by other methods. Accurate theoretical prediction of the critical parameters for dipolar square-
well fluids remains as a challenge.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Modeling thermodynamic properties of polar fluids on the basis
of simple intermolecular potential functions is a common approach
in statistical physics. The theoretical study of the systems, in which
the interparticle interactions can be written as a sum of an isotropic
term and an anisotropic term, are commonly based on the thermo-
dynamic perturbation theory. First the perturbation expansion of
the Helmholtz free energy of these systems was proposed by Pople
[1], and then developed by Gubbins and Gray [2] and Ananth et al.
[3]. Evaluation of high-order terms in the resulting series is in gen-
eral a difficult task, and to circumvent the problem the use of the
Padé approximation was suggested by Stell et al. [4,5]. A number of
different potential functions describing interparticle interactions
in polar fluids are provided in the literature. The simplest model is
a dipolar hard sphere (DHS), this being a hard sphere of diameter �
bearing a permanent dipole moment m at its center. The interac-
tion between two DHSs i and j is given by a sum of isotropic hard
sphere (HS) and anisotropic dipolar (D) terms:

UHS
ij =

{
∞, rij < �

0, rij ≥ �
, (1)
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UD
ij = −

[
3

(mi, rij)(mj, rij)

r5
ij

− (mi, mj)

r3
ij

]
, (2)

where rij is the interparticle separation vector and rij = |rij|. The DHS
fluid has been the subject of intense scrutiny over the years, in
terms of its structure, phase behavior, and dynamics [5–9]. Gub-
bins and Twu [10] and Flytzani-Stephanopoulos et al. [11] chose
the Lennard–Jones potential for the isotropic part of potential and
studied phase behavior of polar liquid mixtures. Their work was the
basis of some other studies of polar fluids [12,13]. Monte Carlo sim-
ulations were used to study the properties of the dipolar Yukawa
hard-sphere [14–16] fluid and Stockmayer fluid [16,17] over a wide
range of the particle dipole moment values. Using Padé approxima-
tion Alavi and Feyzi [18] considered square-well (SW) potential as
a reference

USW
ij =

⎧⎪⎨
⎪⎩

∞, rij < �

−ε, � ≤ rij < ��

0, rij ≥ ��

, (3)

where � is the potential well width, and ε is the potential well
depth, and calculated the dipolar contribution to the Helmholtz
free energy for dipolar square-well (DSW) fluids. The final equation,
which consist of integrals over two- and three-body correlation
functions for the reference fluid, has been applied to obtain critical
parameters of DSW fluids. Martin-Betancourt and co-workers [19]

http://dx.doi.org/10.1016/j.fluid.2014.11.021
0378-3812/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.fluid.2014.11.021
http://www.sciencedirect.com/science/journal/03783812
http://www.elsevier.com/locate/fluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fluid.2014.11.021&domain=pdf
mailto:Ekaterina.Elfimova@urfu.ru
dx.doi.org/10.1016/j.fluid.2014.11.021


126 E.V. Turysheva et al. / Fluid Phase Equilibria 386 (2015) 125–133

have presented Monte Carlo (MC) simulations of the vapor–liquid
equilibrium of DSW fluid. Their results are consistent with previous
estimations reported in Ref. [20]. Benavides and co-authors [21,22]
have derived the equation for the free energy by perturbation the-
ory allowing to study the effects of SW range and dipolar strength
on the vapor–liquid equilibrium.

Thermodynamic properties of DSW fluids can be estimated from
the virial expansion of the Helmholtz free energy. In a recent
study, Elfimova and co-workers [23] constructed the logarith-
mic free energy (LFE) theory based on logarithmic representation
of the Helmholtz free energy, which required only the first few
virial coefficients as input; it will be summarized briefly in Sec-
tion 2. A critical comparison of virial expansion and LFE theory
with the equations of state from simulations of DHSs has shown
that LFE theory is superior. Also it has been demonstrated that
LFE outperforms the traditional thermodynamic perturbation the-
ory of Stell and co-workers [4,24]. The same conclusion has been
reached for DHS fluids in an applied magnetic field [25]. In this
work the analytical expressions of the second and third virial
coefficients are evaluated for DSW fluids. Numerical results are
obtained using Mayer-sampling method introduced by Singh and
Kofke [26]. Next the analytical results are incorporated in to various
virial-type expressions for the thermodynamic functions, including
the so-called perturbed virial expansion developed by Nezbeda and
co-workers [27–29], and LFE theory [23]. The theoretical results for
the Helmholtz free energy and the equation of state of DSW flu-
ids are compared critically against MC simulation results, and it is
demonstrated that the virial expansion for DSW fluid is superior
LFE theory. This surprising result, which has been also found for
pure SW fluid [30], shows that despite the fact that LFE is robust for
DHS it cannot correctly describe the thermodynamic properties of
fluids interacting by short-range attractive SW potential.

This article is arranged as follows. In Section 2, the analytical
result for the DSW virial coefficients are derived, and LFE theory is
outlined. The Mayer-sampling and MC calculations are described in
Section 3. The main results are presented in Section 4, organized in
terms of the virial coefficients, Helmholtz free energy, the equation
of state and vapor–liquid critical behavior. The conclusion from the
work is summarized in Section 5.

2. Theory

Let us consider DSW fluids of N spherical particles of diameter
�, confined to a volume V at temperature T. The total interaction
energy of the fluid is

Uij = USW
ij + UD

ij . (4)

Reduced units are defined in the conventional way: reduced tem-
perature T* = kT/ε (k is the Boltzmann factor); reduced dipolar
interaction parameter � = m/

√
�3ε; the volume fraction ϕ = n�,

where n = N/V is a number density, and � = ��3/6 is the particle
volume. The virial expansion for the Helmholtz free energy F is
[31,32]

F

εNT∗ = Fid

εNT∗ +
∞∑

n=1

Bn+1ϕn, (5)

where Fid is the ideal-gas contribution and Bn+1 is a virial coefficient.
To calculate the virial coefficients for DSW fluids we use the tech-
nique suggested by Ivanov and Novak [33] and successfully applied
for describing of the phase separation of dipolar soft sphere system
with isotropic steric interparticle interaction described by sum of
Van der Waals potential and the shifted and cut-off Lennard–Jones
potential. The method is based on the idea that interparticle attrac-
tion introduces some correction to free energy of the base system
of particles interacting only via the repulsive potential. Following

[33] SW potential can be decomposed in to hard-sphere repulsion
and square-well attraction. Dipolar interpartical interactions and
square-well attraction introduce some correction to the free energy
FHS of the reference system of hard spheres (HS). The difference
between virial expansions for the DSW fluid (F) and HS fluid (FHS)
can be written as

	F

εNT∗ = F − FHS

εNT∗ =
∞∑

n=1

	Bn+1ϕn. (6)

	Bn+1 is related to the virial coefficients by

	Bn+1 = Bn+1 − BHS
n+1, (7)

where Bn+1 and BHS
n+1 are virial coefficients for the DSW and HS fluids,

respectively. Following [23] 	Bn+1 can be represented as a series
expansion in reduced dipolar interaction parameter �. In this paper
	B2 and 	B3 are evaluated up to six order �6. These calculations
are laborious, and the details are given in Appendix A. The second
virial coefficient B2 is

B2 = BHS
2 − 4(�3 − 1)(u − 1) + 4

3

(
�2

T∗

)2 (
u

�3
− u − 1

�3

)
, (8)

BHS
2 = 4, u = exp

(
1
T∗

)
.

Note that the terms ∼(�2/T*) and ∼(�2/T∗)
3

equal zero (see details
in Appendix A). The limit cases are:

1. � = u = 1, DSW fluid corresponds to DHS system and Eq. (8)
depends only on temperature and dipolar interaction parameter

B2(� = u = 1) = BHS
2 − 4

3

(
�2

T∗

)2

; (9)

2. � = 0, DSW system corresponds to SW fluid and the second virial
coefficient is

B2(� = 0) = BHS
2 − 4(�3 − 1)(u − 1), (10)

that coincide with the known theories for DHS and SW fluids
[23,34,35]. The third virial coefficient has been calculated for
1 ≤ � ≤ 2:

B3 = BHS
3 + q1(�, u) +

(
�2

T∗

)2

q2(�, u) +
(

�2

T∗

)3

q3(�, u), (11)

BHS
3 = 5, q1(�, u) = −(�6 − 18�4 + 32�3 − 15)(u − 1)

− 2(�6 − 18�4 + 16�3 + 9�2 − 8)(u − 1)2 − 6(�2 − 1)
3
(u − 1)3,

q2(�, u) = 2 ln

[
(� + 1)2

4�

]
u(u − 1) − 2 ln 2 − 1

3

− 3
(�2 + 1)(�2 − 1)

3

�4
u3 + (� − 1)2

3�4(� + 1)2
[−(32�7

+ 92�6 + 112�5 + 98�4 + 76�3 + 38�2 − 4� − 9)u

+ (9�8 + 68�7 + 146�6 + 148�5 + 98�4 + 40�3

− 16�2 − 40� − 18)u2],

q3(�, u) = − 2
9�6

[−5�3 + (−17�3 + 18�2 − 1)u + (−�9 + 18�7

− 32�6 + 49�3 − 36�2 + 2)u2 + (�9 − 18�7

+ 27�6 − 27�3 + 18�2 − 1)u3].
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