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a b s t r a c t

We propose a new semi empirical expression of the equation of state for a hard sphere fluid which is
valid in the disordered phases over the whole density range below and above the freezing point. Starting
from the existing numerical results for the virial coefficients, we elaborate a compact expression for the
equation of state which is compatible both with the low and medium density behaviour (disordered
stable phase) and with the asymptotic high density behaviour (disordered metastable phase). The
resulting equation of state has a compact form and exhibits a simple pole at the close random packing
density and a double pole at a density equal to 1. That equation of state only depends on the following
quantities: the virial coefficients B2, B3 ,B4, which can be exactly computed, the random packing density
x0, which is imposed by statistical geometry, and the residue of the pole in x0. The results are in a fairly
good agreement with the numerical data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The random packing of a very high number of identical hard
spheres in a large container is a useful model for simple fluids: rare
gases at high density or liquid metals are examples of such fluids; it
is also a model for colloids, granular and amorphous materials.
Consequently, an enormous quantity of theoretical [1,2] as well as
numerical [3e6] and experimental [7] works have been dedicated
to the equation of state of hard sphere fluids.

An essential parameter is the packing factor x, which is the ratio
of the actual volume of a system of spheres to the total volume they
occupy. The pioneering experiments on model systems performed
by Bernal et al. [8] and Scott et al. [9] have shown that the random
packing density for hard spheres is very sensitive to experimental
conditions. x can be increased up to a self-blocking situation (“loose
random packing”) whose precise value critically depends on the
way the “fluid” has been poured into the container; by gently
shaking or vibrating the container so as to simulate thermal
agitation and to allow for local re-arrangements, the packing den-
sity comes closer to an upper limit x0 (“close random packing”)
which is found to be about 0.637 [10,11] when one extrapolates the
experimental points to an infinite sample i.e. when the boundary

effects become negligible.
Molecular dynamics and Monte Carlo-type calculations have

confirmed those results but actually extensive numerical simula-
tions have evidenced a more complex behaviour [12]: in the
absence of any attractive term in the molecular interaction, there is
no thermally induced liquid e gas phase transition but freezing of
the fluid phase can occur when the packing density exceeds a value
xf y 0.495. Above x0 only the ordered phase exists, its density be-
tween ultimately capped by the fcc packing density xfcc ¼ p21/2/
6y 0.7405. Between xf and x0 the fluid phase is metastable [13,14]:
a randomly packed fluid is very sensitive to shearing, in contrast
with a regularly packed medium, and the close random packing
limit x0 can be exceeded if some shearing, locally creating ordered
domains, is applied; the actual system then presents a mixture of
ordered and disordered areas, the so-called “jammed states”
[15e17]. Melting of the ordered phase occurs when the density goes
down backwards below xm y 0.545.

Quite generally the fluid pressure can be expressed as an
expansion in powers of the density, the “virial expansion”. For a
system of N identical hard spheres of diameter D in a container of
volume V it can be written as

Pv
kBT

¼ xþ 4 x2 þ B3 x3 þ B4 x4 þ B5 x5 þ B6 x6 þ ::: (1)
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P is the pressure, v ¼ pD3/6 is the molecular volume, kB is the
Boltzmann constant, T is the absolute temperature and x ¼ Nv/V is
the packing factor or reduced density. The number of particles N
and the volume V are arbitrary large but finite, whereas x is a given
finite parameter. In this expansion, the first term is the ideal gas
term, the second one the mean-field term, the third term and the
subsequent ones account for the molecular correlations; B3 ¼ 10,
B4 ¼ 18.364768…, the following coefficients can be computed
numerically, the task getting increasingly harder with the order:

Pv
kBT

yxþ 4 x2 þ 10 x3 þ 18:3648 x4 þ 28:2245 x5 þ 39:8151 x6

þ 53:3444 x7 þ :::

(2)

So far a large number of theoretical or semi-empirical equations
of state, usually expressed as

PV
NkBT

¼ f ðxÞ; (3)

have been proposed for hard sphere systems [2]. In particular the
famous Carnahan & Starling equation of state [18] is obtained by
rounding the known virial coefficients as

PV
NkBT

¼ 1þ 4 xþ 10 x2 þ 18 x3 þ 28 x4 þ 40 x5 þ 54 x6… :

(4a)

and extrapolating so that those coefficients appear to derive from a
simple recursion

Bp ¼ p� 1ð Þ pþ 2ð Þ (4b)

In compact form, the Carnahan & Starling equation of state is
written as

PV
NkBT

¼ 1þ xþ x2 � x3

1� xð Þ3
(4c)

That expression is known to work remarkably well in the stable
phase, i.e. for x <y 0.5, and even a little beyond in the metastable
phase [19]. Now it is obvious that at high density it does not work
any longer since it has a triple pole divergence for x ¼ 1, whereas
the equation of state should exhibit a simple pole for x¼ x0; actually
it is known from the asymptotic expression of the virial coefficients
[20] that the equation of state at high density takes the following
form [21,22]:

PV
NkBT

y
l

1� x=x0
(5)

where l is a numerical coefficient whose value is about 2.8; in the
high density limit the virial coefficients are then given by

limp/∞Bp ¼ l

x0ð Þp�1 (6)

In the present paper, starting from the existing numerical results
for the virial coefficients, we intend to exhibit a compact expression
for the equation of state which is simultaneously compatible both
with the low and medium density behaviour (disordered stable
phase) andwith the asymptotic high density behaviour (disordered
metastable phase). We will see that our resulting equation of state
only depends on the following quantities: the virial coefficients
B2, B3 ,B4, which can be exactly computed, the random packing

density x0, which is imposed by statistical geometry, and the res-
idue of the pole in x0.

2. Derivation of the virial coefficients

In order to account for the pole in x ¼ x0 it is necessary for the
equation of state to have the following form:

PV
NkBT

¼ 1þ 4xþ 10x2
f1 xð Þ

1� x=x0
(7)

We develop f1(x) as a series of the density

PV
NkBT

¼ 1þ 4xþ 10x2
1þ a4xþ a5x

2 þ a6x
3 þ a7x

4 þ…

1� x=x0

 !
:

(8)

By construction, that equation of state is consistent with the low
density limit (x / 0) and the high density limit (x / x0). In
particular it is known that for hard spheres [1,2] the compressibility
factor PV/NkBT and the contact value of the pair correlation func-
tion gHS(R ¼ Dþ) are connected through

PV
NkBT

¼ 1þ 4x gHS R ¼ Dþð Þ (9)

We see in the expression Equ. (8) that we recover the expected
low density behaviour

limx/0
PV

NkBT
¼ 1þ oðxÞ and limx/0gðR ¼ DþÞ ¼ 1þ oðxÞ:

By identification of Equ. (8) with the virial expansion we get

B4=10 ¼ ðx0Þ�1 þ a4
B5=10 ¼ ðx0Þ�2 þ ðx0Þ�1a4 þ a5
B6=10 ¼ ðx0Þ�3 þ ðx0Þ�2a4 þ ðx0Þ�1a5 þ a6
…

(10a)

or equivalently

B5 ¼ ðx0Þ1B4þ10 a5
B6 ¼ ðx0Þ1B5þ10 a6
B7 ¼ ðx0Þ1B6þ10 a7
…

(10b)

i.e. for p � 4

ap ¼
�
Bp � ðx0Þ�1Bp�1

�.
10 (11)

Fig. 1 shows the virial coefficients Bp derived from the numerical
results by Clisby & Mc Coy for p ¼ 1 to p ¼ 10 [23] and from the
results recently published byWheatley for p¼ 11 and p¼ 12 [24]. If
we consider those latter data, the curve Bp(p) seems to exhibit an
angular point for p¼ 11. Now it is known that both the pressure P(x)
and its derivative vP(x)/vx which is proportional to the isothermal
compressibility are continuous in the transition from the low and
medium density regime to the asymptotic regime; we thus believe
that the numerical value for B12 is doubtful. Nevertheless, the un-
certainty attached to it is large (s z 26%); we have thus chosen to
retain a corrected value at 1.3 s so as to suppress the angular point.

Table 1 shows the ap coefficients, the inverse values ap�1 and the
ratios apþ1/ap, for p ¼ 4 to p ¼ 12. The ap�1 decrease regularly in
absolute value and seem to go to 0 whereas the ratio apþ1/ap de-
creases to a constant value a z 1.30. Consequently for p high
enough the ap behave like ap, which suggests that f1(x) has a simple
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