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a b s t r a c t

In recent years, the study of the electrolyte solutions has significantly drawn advantage from the
Pseudolattice Theory, developed through various approaches and successfully applied to systems of
technological and scientific interest such as ionic liquids and rare-earth fluids. However, promising
potentialities from the applicative point of view are counterbalanced by a limited investigation about
general consistency of pseudolattice models with fundamentals of Solution Theory. This article focuses
on the Quasi-Random Lattice approach and discusses, in particular, the theoretical consistency at infinite
dilution, since convergence to the Debye-Hückel Limiting Law is a notoriously difficult task for lattice
models not developed within the Debye-Hückel-Poisson-Boltzmann frame. The discussion throws a new
light on the pseudolattice treatment of electrolyte solutions, and definitely states in what sense an ionic
lattice is included in the QRL model at strong, and even infinite, dilution. Present developments
generalize previous QRL formalism and allow for advancing toward a unified pseudolattice approach.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the extensive study of the electrolytic solutions, re-
searchers have often resorted to the idea of some lattice-like
ordering of ions and molecules in the solution that would
explain, in particular, the formation of local structures experi-
mentally observed in medium-high concentrated solutions.
Numerous theories have been therefore developed around a lattice
concept, many of them with focus on the activity-coefficient
modeling.

In most local-composition models, notably based on quasi-
chemical and/or molecular thermodynamic approaches (Wilson
Equation, UNIQUAC, UNIFAC, NRTL, plus numerous refinements and
hybrid treatments, see, e.g., Ref. [1] for a detailed review), a lattice-
like behavior is considered through the presence of non-
randomness factors that account for the tendency of molecules to
show some preference in choosing their immediate neighbors.
Originally developed for non-electrolytes, local-composition
models were proposed for electrolyte solutions by inclusion of a
modified Debye-Hückel (DH) term to account for long-range ion-
ion interactions. On the whole, these models deal with most ther-
modynamic functions and properties, and offer flexible sets of

equations suitable for engineering applications under very general
conditions in terms of chemical composition, pressure, and tem-
perature ranges [1]. However, a relevant drawback is represented
by the number and the variety of required adjustable parameters,
often empirical or semi-empirical in character, which must account
for incompleteness in the available information about size and
shape of particles, ionic and molecular interactions, and thermo-
dynamic excess functions. A corollary difficulty is that even pa-
rameters with a very similar definition from one model to another
can yield very dissimilar results. One should also state that, despite
their huge parameterization, sometimes these models present
inaccurate [2], and are forced to undergo an almost continuous
upgrading [2e4].

Some theories, adopting nearest-neighbor interaction princi-
ples, put a particular emphasis on the electrostatic character of
ionic and dipolar interactions, and in this connection it is to quote
the Lattice Restricted Primitive Model (LRPM) [5,6], developed with
main application to critical phenomena and phase transitions
(topics generally treated by the Lattice Density Functional Theory
[7]). Grand canonical Monte-Carlo simulations and fine-lattice
discretization methods have supported LRPM results [5], however
direct applicability of LRPM is thus far quite limited and proved
useful under very specific conditions (e.g., for modeling defects in
ionic crystals). In consideration of the infinite-dilution analysis
presented in this article, it is also outlined that the LRPM equation
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combines the linearized Poisson-Boltzmann (PB) equation with a
lattice Laplacian represented by a sum of nearest-neighbor differ-
ence potentials [6]. However, since the LRPM equation is built on
the DH equation, it does not allow for an independent derivation of
the DH Limiting-Law (DHLL) based on a pseudolattice approach.

Pseudolattice approaches developed almost independently of
the DH-PB theory first appeared in literature in the early twentieth
century [8]. Most of them include the so called “cube-root law”,
originally motivated by the incompatibility between the fine-
grainedness of the ionic atmosphere, implied in the DH treat-
ment, and the coarse-grainedness of actual solutions [9]. The law
describes ion-ion long-range interactions as depending on the cu-
bic root of the concentration, that is, on the mean distance between
neighboring ions within an ionic crystal. The formal similarity with
ionic crystals justifies the presence of the Madelung constant [10]
in the electrostatic contribution to the mean activity coefficient
g±(molal scale), the latter typically provided by an equation such as
below.

ln
�
g±
� ¼ Ac1=3 þ Bcþ Dc2 � ln

�
1þ ðnþ þ n�ÞmM1

1000

�
(1)

In Eq. (1), c is the molar concentration (mol/dm3); the last term
of Eq. (1) accounts for conversion from rational to molal scale; m is
the molal concentration (mol/kg), M1 the molecular weight of
solvent, nþ and n� the stoichiometric numbers. In the long-range
electrostatic term Ac1/3, A is proportional to the Madelung con-
stant of a suitable ionic crystal. The term Bc arises from the
modeling of ion-solvent interactions that, in general, reflect into
changes in the dielectric permittivity of the solvent from bulk to
local values around an ion. These concepts are also present in local
composition models [1] and Specific Ion Theory [8]. Theoretical
expressions for B were proposed based on hydration salting-out
effects [11], local ion-dielectric gradient interactions [12], and
dispersion energy [13]. In Eq. (1), the Dc2 term first appeared in
Ref. [14] and was derived from the ion-ion short-range interaction
potential, which includes both the hard-core and attractive tail
(Van der Waals) parts. However, thus far the parameters B and D
(that depend on pressure and temperature) have been used as
adjustable parameters and their values only obtained by fitting Eq.
(1) to experimental activity coefficients. Although quasi-ionic lat-
tice structures are presently observed in non-dilute solutions by
means of various experimental techniques (X Ray Diffraction,
Raman Spectroscopy and Neutron Scattering [15]) and are sup-
ported by conductivity studies [16e18], pseudolattice approaches
(Eq. (1)) have been subject to controversial attention over the last
few decades. Competitive potentialities of Eq. (1) pertaining to
highly concentrated solutions and ionic liquids [19], while using a
limited number of adjustable parameters, are counterbalanced by
the dependence on the cube-root law that causes problems in using
the equation with dilute solutions (the electrostatic Ac1/3 contri-
bution becomes predominant and suggests unrealistic, crystal-like
distribution functions). The main drawback of the cube-root law is
the evident inconsistency with DHLL that predicts a square-root
dependence on concentration. Many efforts were spent in the
past [8] in order to circumvent this problem and to establish which
starting concentration should be used such that the cubic-root law
is indeed preferable. Glueckauf [20] proposed an extended version
of the DH equation that approximated a cube-root law at inter-
mediate concentrations, Pitzer [21] tested the equation by
Glueckauf [20] versus the Virial Coefficient expansion, whereas
Frank and Thompson [9], and Rasaiah [22] explored concentration
ranges where a cubic-root law would collapse approximately into a
square-root law. However, no theory was derived and only empir-
ical rules, electrolyte-specific, were suggested.

The appealing potentialities of models depending on a limited
number of adjustable parameters are notably appreciable in the
Quasi-Random Lattice (QRL) model [23] developed independently
of Eq. (1). In QRL the parameterization is generally given by one
electrolyte-specific concentration parameter (at given temperature
and pressure), which also sets the upper limit of applicability (in
terms of concentration range) for the model. An undoubted
advantage is that the concentration parameter is experimentally
known [23e26] in a relevant number of cases including several
saturated and supersaturated solutions of both symmetric and
asymmetric electrolytes, for which no fitting procedure is needed
for obtaining mean-activity and osmotic coefficients. In addition,
previous comparison [23e26] made over common aqueous 1:1, 1:2
and 1:3 electrolytes with most familiar one-parameter theories
developed within the PM frame (notably DH extended equations,
MSA and HNC) has shown that QRL usually performs better in
terms of agreement with experimental mean-activity and osmotic
coefficients, and this is remarkable noting that, in PM de-
velopments, the agreement is often conditioned by use of ionic
diameters adjusted through data regression techniques (in this
connection, a further comparison will be proposed with a recent
DH extended theory [27]). However, thus far the theoretical
agreement of the QRL model with fundamentals of Solution Theory
has been little investigated and needs to be analyzed in detail. To
the aim, the present article discusses, in particular, the thermody-
namic consistency of QRL at the infinite dilution. It will be shown
that QRL represents an independent pseudolattice approach from
which DHLL can formally be obtained (the existence of a relation-
ship between QRL and DHLL was only qualitatively intuited in
previous work [25]). The QRL-to-DHLL derivation will allow for
advancing toward a unified pseudolattice approach, applicable
from the infinite dilution, and able to enlarge scientific consensus
and research efforts in regard to pseudolattice models that are
already under active consideration [18,19,26,28].

In the QRL model an ionic lattice represents the reference
electrostatic configuration which is, however, continually disor-
dered by thermal forces and molecular collisions occurring in the
solution. Lattice sites are conveniently used as points from which
observing and evaluating (in a statistical sense) the dynamic
behavior of carriers of charge, that are solute ions at strong dilution,
groupings of solute ions and solvent molecules at higher concen-
trations. At each lattice point (and related cell volume) one can then
associate an effective carrier, representing the average behavior of
all carriers pertaining to the cell, and described by an effective
(average) density of charge. The standard deviation (from the lat-
tice point) associated with the effective density represents the
“extent” of the effective carrier, and arises from combining effects
due to size and stochastic movement of carriers. Standard de-
viations are generally large at strong dilution, causing the mean
interaction energy (which yields the mean activity coefficient) to
deviate significantly from the Madelung energy of the reference
ionic-lattice.

The convenience in considering an “ordered” ionic lattice as the
reference electrostatic configuration persists until the number of
ions becomes too small even at microscopic scale, and charges
orderly disposed according to their signs no longer represent the
preferential configuration from the electrostatic point of view.
Therefore, the key step in going from QRL to DHLL is to relax the
reference configuration by replacing the ordered lattice with an
almost randomized lattice, characterized by the minimum corre-
lation in terms of site occupancy, i.e., correlation concerns only
neighboring sites, while the average interaction involves the min-
imum number of ions, that is, two ions of opposite sign.

A milestone in the study of electrolyte solutions from the
statistical-mechanical point of view is represented by the
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