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a  b  s  t  r  a  c  t

In this  study,  the application  of  artificial  neural  network  (ANN)  method  in  predicting  the  density  of  alkali
metals  and  their  mixtures  is investigated.  A  total  number  of  595  different  data  points  of  these  compounds
were  used  to  train,  validate  and test  the  model.  A typical  three-layer  feedforward  backpropagation  neural
network  has  been  trained  by the  Levenberg  Marquardt  algorithm.  The  tansig-tansig  transfer  functions
with  15  neurons  in  the  hidden  layer  makes  the  least  error,  so  a network  with  (8-15-1)  structure  was
used  to  design  the  ANN  model.  The  average  relative  deviations  for train,  validation,  and  test  sets  are
0.1029,  0.1396,  and  0.1002,  respectively.  A comparison  between  our results  and  those  obtained  from
some  previous  works  shows  that  this  work,  as  an  excellent  alternative,  can  provide  a simple  procedure  to
predict the  density  of  these  compounds  in  a better  accord  with  experimental  data  up  to high temperature,
high  pressure  (HTHP)  conditions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of alkali metals is an interesting field for many
researchers, due mainly to their specific advantages for high-
temperature applications. Alkali metals’ desirable properties such
as low vapor pressure, high boiling point, high thermal conductiv-
ity, and good thermal and reaction stability, permit low-pressure
operation of coolant systems at high temperatures and radiation
fluxes. Therefore, they are widely used in modern science and tech-
nology [1–5]. The construction of high energy electrochemical cells
as well as thermionic and magneto-hydrodynamic converters is
only possible using alkali metals. They could be more effectively
used in extraction metallurgy, especially in that of some precious
metals from their ores and wastes. Liquid alkali metals also act as
coolant in nuclear power plants [6]. The temperatures envisaged in
these applications are frequently above the range of temperatures
for which the experimental data on the physical properties of the
liquid metals are available.

The experimental difficulty in obtaining data for alkali metals
at elevated temperatures arises from the high chemical reactivity
of these elements. They can readily react with components of the
surrounding atmosphere such as oxygen, nitrogen, carbon dioxide,
and water vapor. It is difficult to obtain materials of high purity,
and it is easy to contaminate samples during measurements. So it
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is important to predict alkali metals’ properties using an accurate
and trustworthy method.

The information on the physical and thermodynamic properties
of alkali metals is important in technological application of these
groups of elements. During the last decades, many studies have
been devoted to prediction of thermodynamic properties of liq-
uid alkali metals [7–24], and their alloys [25–29]. Different authors
used different equations and methods to predict and reproduce
the thermodynamic properties of these systems. Some of these
attempts are restricted to the limited ranges of temperature and
pressure and their results to predict the thermodynamic proper-
ties of these systems show different degrees of accuracy. It still
seems essential to find a new method by which the thermodynamic
properties of alkali metals and their alloys can be predicted more
accurately.

An artificial neural network (ANN) can be a suitable alternative
to model the different thermodynamic properties. The relation-
ship between the physical and thermodynamic properties is highly
nonlinear, and an artificial neural network (ANN) is an especially
efficient algorithm to approximate a certain function (such as den-
sity) by learning the relationships between the input and output
vectors [30]. Consequently, ANN method can be an alternative tool
to model the different thermodynamic properties [31,32]. In the
past decades, ANNs have been intensively used in various fields.
The major reason for this rapid growth and diverse applications of
neural networks is their ability to virtually approximate any func-
tion in a stable and efficient way. This method also is widely used to
estimate the different thermodynamic properties such as density,
melting point, vapor pressure, etc. for different classes of materials
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[33–48]. To the best of the authors’ knowledge, there isn’t any pub-
lication on the application of the ANN for the prediction of density of
liquid alkali metals, neither for pure alkali metals nor for their mix-
tures. In this study, the application of the ANN method in predicting
the density of alkali metals and their mixtures is investigated.

2. The neural network used

Artificial neural network is a simple method for modeling, which
does not need explicit formulation between input and output data.
It carries out the modeling based on simple mathematical func-
tions even in the case of complex systems. The first idea of the
neural networks came from the structure of the human brain.
The purpose of designing the neural network was simulating par-
allel structure of biological neural system. Accordingly, artificial
neural networks generally consist of a number of interconnected
processing elements called “Neurons”, which are connected in a
massively parallel structure. How the inter-neuron connections are
arranged determine the structure of a network. How the strengths
of the connections are adjusted or trained to achieve a desired over-
all behavior of the network is governed by its learning algorithm.

All neural networks consist of different layers: three main lay-
ers which are called input, hidden, and output layers. The hidden
layer itself may  consist of multiple layers. The input layer consists
of one neuron for each variable. The number of neurons in the out-
put layer is also equal to the number of output variables. Since,
there is no specific approach to determine the number of neurons
of the hidden layer, the optimum number of neurons was  deter-
mined by adding neurons in a systematic way during the learning
process. The neurons of each layer are connected to the next one
by weighted connections. Weighted connections make a relation
between the inputs and outputs of the network. It has been showed
that any complicated nonlinear function can be modeled by a mul-
tilayer feed forward neural network with one hidden layer to an
arbitrary degree of accuracy [47]. In this work, a typical three-layer
feedforward backpropagation neural network was used. The net-
work was programmed with the software MATLAB. This network
is very effective for representing nonlinear relationships among
variables. In this network, the flow of information spreads forward
through the layers while the propagation of the error is back. Back
propagation method usually gives out better results in the case of
chemical engineering systems [39].

The output variable (density) is calculated using the input vari-
ables according to the following steps: The net inputs (N) for the
hidden neurons are calculated from the input neurons via:

Nh
j =

n∑
i

wh
ijpi + bh

j (1)

where p corresponds to the vector of the inputs of the training, j is
the hidden neuron, wij is the weight of the connection among the
input neurons with the hidden layer, and the term bj corresponds
to the bias of the neuron j of the hidden layer. A network with
bias developed relations between input and output easier than a
network without bias. Starting from these inputs, the outputs of
the hidden neurons (y) are calculated using a transfer function fh

associated with the neurons of this layer.
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(2)

Similar calculations are carried out to obtain the results of each
neuron of the following layer until the output layer.

The utmost advantage of an ANN is eliminating the complex
equations, and replacing them with popular transfer functions. Dif-
ferent types of transfer functions have been proposed for artificial

neural networks such as linear (purelin) function, logarithmic sig-
moid (logsig), and hyperbolic tangent sigmoid (tansig) [30]. In the
present study, different combinations of these mentioned transfer
functions have been tested to choose the best. The purelin, logsig,
and tansig transfer functions are defined in Eqs. (3)–(5), respec-
tively:

purelin(n) = n (3)

logsig(n) = 1
1 + exp(−n)

(4)

tansig(n) = 2
(1 + exp(−2n)) − 1

(5)

There are three main stages in the operation of the neural networks:
learning, validation and test. The learning or training is the process
in which the neural networks modify the weights and biases in
answer to the initial information. The validation is used to mea-
sure the generalization of a network, and to halt training when
generalization stops improving. The error on the validation sub-
set is monitored during the training process. The validation error
normally decreases during the initial phase of training, as does the
training set error. However, when the network begins to overfit
the data, the error on the validation set typically begins to rise.
When the validation error increases for a specified number of iter-
ations (the training is stopped, and the weights and biases at the
minimum of the validation error are returned. Testing stage has
no effect on training and so provides an independent measure of
network’s performance.

Overfitting occurs when the error on the training set is driven to
a very small value, but when new data is presented to the network,
the error is large. In the other words, the network has memorized
the training examples, but it has not learned to generalize to the
new situations. Note that in this study, the number of parameters
in the network is much smaller than the total number of points
in the training set and in this case, there is little or no chance of
overfitting. Also, there are some techniques to prevent overfitting.
Early stopping is automatically provided for all of the supervised
network functions including the back propagation in which the
data are divided into three subsets and prevent the overfitting.
Regularization is the other technique that involves modifying the
performance function. In this study, the early stopping has been
used.

During the training process, input data are fed to the input layer
of the network and the difference between the results from the
output layer and the desired outputs (i.e., network error) is used
as a criterion for adjustment of the network’s synaptic weights and
biases. At the beginning, all synaptic weights and biases are ini-
tialized randomly. Then, the network is trained (i.e., its synaptic
weights are adjusted) by an optimization algorithm until it cor-
rectly emulates the input/output mapping [48,49]. Scheme 1 shows
a block diagram developed to create an ANN model to predict the
density of alkali metal systems and their mixtures.

In this study, 595 different data points of alkali metals and their
alloys were used to train, validate and test the network. Table 1
shows the names of investigated alkali metal systems and the tem-
perature and pressure ranges of experimental data [50–54] used
in this work. The input parameters of the network were temper-
ature (T), pressure (P), molecular weight (in the case of mixtures,
average molecular weight) (Mw), and the composition of each sys-
tem (xi). Experimental density data at several temperatures and
pressures were collected from the literature for both pure alkali
metals [50–53] and their alloys [54]. In this work, all data were
divided randomly to three subsets: 70% were randomly chosen to
train the network, 15% for validation, and 15% to test it. In addition,
the feed-forward multi-layer neural network has been trained by
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