Fluid Phase Equilibria 425 (2016) 374-384

Contents lists available at ScienceDirect

Fluid Phase Equilibria

journal homepage: www.elsevier.com/locate/fluid

A simple model for temperature-independent k_{ij} of the PR-vdW model for mixtures containing HCs, HFCs, PFCs, HFOs, CO₂, RE170 and R13I1

Haiyang Zhang ^{a, b}, Maoqiong Gong ^{a, **}, Huiya Li ^{a, *}, Yanxing Zhao ^{a, b}, Quan Zhong ^{a, b}, Xueqiang Dong ^a, Jun Shen ^a, Jianfeng Wu ^a

^a Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China ^b University of Chinese Academy of Sciences, Beijing 100039, China

A R T I C L E I N F O

Article history: Received 29 April 2016 Received in revised form 12 June 2016 Accepted 15 June 2016 Available online 18 June 2016

Keywords: Binary interaction parameter Vapor-liquid equilibrium Binary mixture Ternary mixture Equation of state Mixing rules

ABSTRACT

The purpose of this paper is to establish a simple model for temperature-independent binary interaction parameter k_{ij} of the PR-vdW model (Peng-Robinson equation of state with van der Waals one-parameter mixing rules). The model was proposed as $k_{ij} = w_j k_i + w_i k_j$ ($i \neq j$). In the present model, every pure component was considered to have a constant contribution k_i to k_{ij} , constant w_i is the contribution coefficient of component *j* mixing with component *i*. k_{ij} can be determined by summing the contribution coefficient of each pure component times its contribution. By regressing the vapor-liquid equilibrium (VLE) data of binary mixtures, 119 k_{ij} were obtained and used to optimize the constant contribution k_i and contribution coefficient w_i . k_{ij} of 351 binary systems were predicted and used to describe the VLE data of binary mixtures. Better performs could be found in the present model than the available models on VLE description of the mixtures.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Traditional chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) have already been or will be replaced by refrigerants with zero ODP and low GWP values such as hydrocarbons (HCs), hydrofluoroolefins (HFOs), a part of hydrofluorocarbons (HFCs) and so on [1]. Owing to the better performance, mixed refrigerants especially the azeotropic mixtures are considered to be much promising alternative refrigerants [2–13]. Vapor-liquid equilibrium (VLE) data are essential to get the thermodynamic properties of refrigerant mixture, and can be used to evaluate the performance in a refrigeration cycle indirectly. Many experimental VLE studies are available in the open literature. Although experiments can provide accurate data, they are time consuming and expensive. Thus, reasonable predictions for the VLE properties of mixtures are of great importance.

The SRK [14] and PR [15] cubic equations of state (EOS) with the

** Corresponding author.

vdW [16], WS [17] and HV [18,19] mixing rules (MR) are usually employed to predict the VLE data of mixtures. Hu et al. [20] pointed out that the mixing rules for the parameters in cubic equations of state are difficult to be applied in a predictive model. But if the binary interaction parameters in cubic equations of state with mixing rules could be predicted, it would be much convenient for the calculation of VLE behaviors by using equation of state directly. A number of models for k_{ii} are available in the open literature. They can be classified into three groups: empirical or semi-empirical model (group 1), theoretical model (group 2), and group contribution model (group 3). In group 1, Chen et al. [21] developed a k_{ii} differential-model (ODM) in PR-vdW model for HFCs + HCs mixtures, in this model each pure component was assumed to have a mixing factor k_i , and the k_{ij} was simply assumed to be the difference between the two mixing factors of the pure components $k_{ij} = k_i - k_j$ (i < j). Hu et al. [20] developed a modified differential-model (MDM) by introduced a weight coefficient. However, the above two models do not have a symmetrical structure in mathematics $k_{ii} = k_{ii}$, which is the request of the vdW one-parameter MR. Thus the calculation of k_{ii} must be in a certain sequence like i < j to meet the symmetrical requirement, that is not convenient. Besides, the choice of the form of weight coefficient in MDM was not

^{*} Corresponding author.

E-mail addresses: gongmq@mail.ipc.ac.cn (M. Gong), lihy@mail.ipc.ac.cn (H. Li).

Nomenclature

	Abbrevia	tions
	AAD	average absolute deviation
	AARD	average absolute relative deviation
	Ar	argon
	CFCs	chlorofluorocarbons
	CH_4	methane
	C_6H_6	benzene
	C ₇ H ₈	toluene
	C_8H_{10}	m-xylene
	CO	carbon monoxide
	CO ₂	carbon dioxide
	EOS	equations of state
	E-PPR78	enhanced predictive Peng-Robinson EOS, 1978
	GCM	group contribution method
	GWP	global warming potential
	H ₂	hydrogen
	H_2O	water
	H ₂ S	hydrogen sulfide
	HCs	hydrocarbons
	HCFCs	hydrochlorofluorocarbons
	He	helium-4
	HFCs	hydrofluorocarbons
	HFOs	hydrofluoroolefins
	HV	Huron-Vidal
	MAD	maximum absolute deviation
	MDM	modified differential-model
	MHV1	Michelsen-Huron-Vidal
	MR	mixing rules
	N ₂	nitrogen
	NO	nitric oxide
	NRTL	non-random two-liquid
	02	oxygen
	ODM	original differential-model
	ODP	ozone depletion potential
	O.F	objective function
	PFCs	perfluorocarbon
	PR	Peng-Robinson
	PPR78	predictive Peng-Robinson EOS, 1978
	R13I1	trifluoroiodomethane
	R14	tetrafluoromethane
	R23	trifluoromethane
	R32	difluoromethane
	R50	methane
	R116	hexafluoroethane
	R125	pentafluoroethane
	R134	1,1,2,2-tetrafluoroethane
	R134a	1,1,1,2-tetrafluoroethane
	R143a	1,1,1-trifluoroethane
	R152a	1,1-difluoroethane
	R227ea	1,1,1,2,3,3,3-heptafluoropropane
	R236ea	1,1,1,2,3,3-hexafluoropropane
	R236fa	1,1,1,3,3,3-hexafluoropropane
	R245fa	1.1.1.3.3-pentafluoropropane
	R290	propane

R600	<i>n</i> -butane
R600a	isobutane
R610	decafluorobutane
R1150	ethene
R1216	hexafluoropropene
R1234vf	2 3 3 3-tetrafluoronron-1-ene
R123 Iyi	(F) trans-1333-tetrafluoronronene
D1270	
N1270	dimentional at here
KE1/U	
SO ₂	sulfur dioxide
SPM	"simple plus model"
SRK	Soave-Redlich-Kwong
Т-р-х-у	temperature-pressure-liquid mole fraction-vapor mole fraction
vdW	van der Waals
VLE	vapor-liquid equilibrium
WS	Wong-Sandler
**5	wong sunder
Sumbole	
Symbols	$a_{\rm D} = 10^{-2}$
u 1-	energy parameter, j·cm ·mor
D	
<i>K</i> _i	constant contribution of component <i>i</i> to k_{ij}
k _{ij}	binary interaction parameter
1	parameter
т	number of <i>k_{ij}</i> in the database
n	number of pure component in the database
<i>n</i> _{var}	number of variables, $n_{var} = 2n$
Ν	number of experimental VLE data of each binary
	system
р	pressure, MPa
p _c	critical pressure, MPa
R	universal gas constant, 8.314472 J·mol ⁻¹ ·K ⁻¹
Т	temperature, K
Tc	critical temperature. K
T _{nb}	normal point temperature. K
T.	reduced temperature
1 F 147	contribution coefficient of component <i>i</i> mixing with
vv _i	component <i>i</i>
N	liquid mole fraction
<i>x</i>	uquid mole fraction
У	vapor mole fraction
Cuash late	touro.
GIEEK IELI	
α	
ω	acentric factor
Cubaning	
Subscript	s auitiant abarratariatia
C	
cal	calculated data
cor	correlated value
exp	experimental data
i	component or experimental data index
j	component index
1	binary interaction parameter index
m	mixture
opt	optimal solution
pre	predicted value

Download English Version:

https://daneshyari.com/en/article/201123

Download Persian Version:

https://daneshyari.com/article/201123

Daneshyari.com