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a b s t r a c t

The phase behavior of binary polymeric solutions such as lower and upper critical solution temperatures
has an important role in many polymeric processes. For theoretical investigation on the prediction of
these temperatures, a substantial number of data points on binary polymeric solutions were collected
from literature and used to present a reliable calculation routine through chemical engineering ther-
modynamic modeling approach. The thermodynamic model of Compressible Regular Solution was used.
The minimization of errors and predefined objective function was done by applying Particle Swarm
Optimization technique. An efficient and accurate empirical correlation employing some quantitative
structureeproperty relationship concept through statistical modeling was developed. To develop the
statistical model, the connectivity indices of polymer and solvent were used as the independent variables
of the model. Four statistical parameters were defined as auxiliary criteria to evaluate the models and
convergence of calculations. In addition, attempts were made to develop and correlate the connectivity
indices (topological descriptors) of polymer and solvent to the lattice fluid theory parameters of Sanchez-
Lacombe Equation of State. The reliability and accuracy of proposed approaches were discussed in-details
and the results were compared to the available experimental data. Desirable agreements between
calculated and experimental data were found in thermodynamic model as demonstrated by a maximum
Individual Absolute Relative Deviation of 5%. An averaged IARD of 4.3% was obtained for the empirical
model. The new correlation predicts connectivity indices of components with acceptable accuracy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The lower critical solution temperature (LCST) is the tempera-
ture belowwhich components of a mixture are completely miscible
for all compositions [1,2]. On the other side, a temperature above
which the miscibility of components for all compositions will be
observed is referred as upper critical solution temperature (UCST)
[3]. UCST and LCST can be observed in partially miscible polymeric
solutions and depends on the operating pressure and solution
component compositions [2,4]. The spinodal and binodal curves [5]

have sharedminimum (critical point) andmaximum respectively at
LCST and UCST.

In polymeric processes such as polymerization and membrane
fabrication [6e9], any knowledge on phase behaviors vs. solution
composition and operating pressure is highly valuable and plays an
important role. While the experimental data on LCST and UCST are
available, however still accurate and reliable approach or model to
correlate these critical solution temperatures (CST) data is rarely
found [6e9]. The research works in literature to model and corre-
late LCST and/or UCST data include [10]; phase equilibrium data
based calculation [11], empirical correlations [12,13], the quanti-
tative structureeproperty relationship (QSPR) models and etc.
[10,14e18].

To develop more accurate and predictive models for LCST and/or
UCST, here, the compressible regular solution theory and lattice
fluid theory were used for thermodynamic modeling. In addition,
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the connectivity indices of polymer and solvent were used to
develop a reliable empirical model. Attempts were made to corre-
late the connectivity indices of selected components to the lattice
fluid scaling parameters. The evolutionary based algorithm of
particle swarm optimization was used for minimization of errors.
The details of modeling, calculations and the obtained results are
illustrated in following paragraphs.

2. Thermodynamic modeling of UCST and LCST

2.1. Model development

Various miscibility behaviors can be observed in binary poly-
meric solutions such as showing only one LCST, only one UCST, both
LCST and UCST simultaneously, cases in which the LCST and UCST
regions have overlapped which are computationally more
complicated. For current work, we considered systems that only
show one LCST or one UCST, and other cases might be investigated
in a future work. The LCST and/or UCST is the point where spinodal
and binodal (coexistence) curves cross, in where there’s a shared
minima for the case of LCST and a shared maximum for the later.

The binodal curve, itself, represent the local thermodynamic
equilibrium of two phases at contact, thus one may write the
equilibrium criteria for component “i” at two phases as presented
by Eq. (1) [2,5,19], where mi is the chemical potential of component i
and superscripts l and r, refer to polymer lean and polymer rich
phases respectively.

mli ¼ mri (1)

The spinodal condition requires that the second derivative of
Dgmix , with respect to the composition (in terms of volume frac-
tion), at constant temperature and pressure, to be positive as pre-
sented by Eq. (2) [5,18,20];

v2Dgm
vf2

i

� 0z
v2Dgm
vf2

i

¼ 0 (2)

In addition, applying material balance, in the form of volume
fraction of the two components, one obtains Eq. (3), which must be
holding on this point (and any point).

fr
1 þ fr

2 ¼ 1 ; fl
1 þ fl

2 ¼ 1 (3)

These set of equations must be solved simultaneously to find
the corresponding temperature (LCST/UCST) in a trial and error
procedure and by an initial guess, which is a kind of optimization
problems that

���Dmli � Dmri

���/0 is used as main optimizing criteria
(in whichDmi ¼ mi � m0i andm0i refers to standard state of the
chemical potential of component “i”). For optimization purpose,
Particle Swarm Optimization (PSO) Technique was used [21,22].

Chemical potential, mi in Eq. (1) (for
���Dmli � Dmri

���/0) can be
calculated by using activity coefficient models such as Flory-
Huggins theory and its extensions (such as Lattice Cluster Theory)
[2]. These models require binary interaction parameters, which
must be calculated or experimentally measured and this limits
their application [23]. It must be noted that using a model which
needs only pure component properties, is of the much interest [5].
Thus, thermodynamic model of Compressible Regular Solution
theory (CRS) was considered in this paper for development of
Model. The main equations of this theory for a binary solution are
given by Eqs. (4)e(6) [20,24e26] where Vi accounts for molar

volume of component “i”.

Dgmix

kT
¼ f1~r1

N1v1
ln f1 þ

f2~r2
N2v2

ln f2 þ f1f2~r1~r2
�
d1;0 � d2;0

�2
þ f1f2ð~r1 � ~r2Þ

�
d21;0 � d22;0

�
(4)

Dm1 ¼ ln f1 þ 1� f1 �
�
~r2=N2v2
~r1=N1v1

�
f1 þ

�
~r1d1;0 � ~r2d2;0

�2
RT

f2V1

(5)

Dm2 ¼ ln f2 þ 1� f2 �
�
~r1=N1v1
~r2=N2v2

�
f1

þ
�
~r1=N1v1
~r2=N2v2

� �
~r1d1;0 � ~r2d2;0

�2
RT

f1f2V1 (6)

The pure component properties are needed for the activity co-
efficient calculations using CRS theory, which can be obtained by
group contribution methods (GCM) [20,24e26]. Group contribu-
tion methods, themselves, can be regarded as some QSPR method
for estimation and calculation of physicochemical properties of
interest. The solubility parameter values at temperature T in CRS
model requires the estimation of the solubility parameter at 298 K
through some group contribution methods (as given
byd2i ðTÞ ¼ d2i ð298Þ½riðTÞ=r0i ðTÞ�), here the van Krevelen GCM was
used [24]. In addition, the reduced density (hard core density) were
calculated from the modified Sanchez-Lacombe Lattice Fluid model
(SL-EOS) [27] (given as ~r ¼ 1� exp½�~r� ~P=~T � ~r2=~T�) using an
iterative root seeking technique [28] and the Constantinou and
Gani group contribution method for evaluation for the scaling pa-
rameters (r*,T*,P*) [24,25,27]. In addition, the coefficients of ther-
mal expansion for each component were calculated through the
modified SL-EOS model [27]. For calculation ofNivi in CRS model (Ni

represents number of hard cores in lattices of volumevi), one might
useNivi ¼ Mw/r* equality, where Mw is the molecular weight of
components (for polymer the repeating units). In this case, Eq. (2)
simplifies to Eq. (8) considering f1 ¼ 1� f2 as dependent
composition [5];
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Using these equations, the temperature of interest, i.e. LCST and/
or UCST, can be searched employing an appropriate optimization
technique [22].

2.2. Method of calculations

Particle Swarm Optimization (PSO) technique was used in this
work for determination of temperature which satisfies the ther-
modynamic modeling criteria. In thermodynamic modeling, the
CRS model, itself, requires no optimization and calculation as this
model is straightforward [5], however, finding the temperature of
interest i.e. LCST and/or UCST, requires solution of a set of equations
as described in previous section, which is an optimization problem.
In this case, the number of variables in PSO is 1 (temperature) [22],
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