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a b s t r a c t

The excluded volume theory of lattice fluids, introduced in Fluid Phase Equilibrium 372 (2014) 126e140,
is enhanced by specifying models for both the attractive and repulsive interaction energy. The result is an
interaction energy function exhibiting a potential well reminiscent of a generalized Lennard-Jones po-
tential. However here the potential well is seen in the Gibbs free energy function at the macro level. The
attractive component of the interaction potential, thou based on a lattice model, can be cast as arising
from a radial distribution function and as such the model is seen as a bridge between lattice fluid models
and models based on the radial distribution method. The success of this theory is based on the following
ideas: (1) Intramolecular and intermolecular bonds can be treated as uncorrelated when modeling the
partition function. The method used to separate the bonds, which is based on an application of Bayes'
theorem, makes a chain molecule appear to have only one segment in a lattice in which the intra-
molecular bonds are excluded. (2) The attractive forces active between molecules are thought of as being
resolved along the generating lines of an assumed lattice. The energy in an interaction bond is assumed
to be inversely proportional to some power of the separation distance between molecules along the
lattice line connecting the two molecules. This results in an interaction potential expressed as a poly-
logarithm with an argument given by a function of the ratio of density to maximum density. (3) An
entropic based repulsive force is introduced that opposes the attractive forces. The repulsive force is
assumed to be inversely related to the number of configurations available to a molecule in the lattice.
Increasing the available configurations decreases the repulsive component of the interaction energy. (4)
Strong energetic effects can be modeled based on a random occupation of lattice sites. For example if the
attractive force between molecules is strong enough to cause clustering the molecular cluster is assumed
to randomly occupy lattice sites. The improved model is successfully applied to the vapor liquid equi-
librium of ethane, ammonia and water. And to the binary mixtures of propane-butane and R152a-butane.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This article further develops the excluded volume theory (EVT)
of lattice fluids originally proposed in Ref. [1] by giving mathe-
matical form to the attractive and repulsive interaction energy
models. The theory again assumes that intermolecular interactions
cause a time weighted average ordering of molecules into a lattice
structure in both the liquid and vapor states. Lattice sites are
considered to be locations of local minima in interaction energy.
The constant buffeting of molecules due to thermal motion knocks
molecules from one lattice site to another. A lattice site is assumed
to be the most likely place to find a molecule.

The lattice is viewed as a molecular network with attractive
connections between molecules occurring along the lattice gener-
ating lines. The network is considered to be a supermolecule [2e4].
Each type of network connection is assigned an interaction energy
characteristic of the type of connection. The strength of the
connection is assumed to be related to the separation distance in
the lattice. The attraction between molecules is assumed to be
opposed by a repulsive force, due to thermal motion, that is
assumed to be related to a loss of configurational entropy.

The theory allows the development of models for thermody-
namic properties and phase behavior for pure fluids and mixtures
with all types of species ranging from simple non-polar molecules
to complex associating and electrolyte components.

Mean-field lattice fluid models, MFLF, have been in continuous
use for about the last seventy five years. Today they arewidely usedE-mail address: mailforgregm@gmail.com.
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to model polymer properties and to a lesser extent to model
vaporeliquid equilibrium of smaller molecules. Comprehensive
reviews of a number of these models have been done, see for
example [5e9]. The most widely used of these models rely on the
lattice statistics of either Flory [10] or Guggenheim [11]. Flory's
theory is often referred to as the Flory-Huggens theory because
Huggens [12] developed it independently at about the same time as
did Flory.

In an MFLF the energy associated with intermolecular in-
teractions is treated as independent of all other energy modes. It is
assumed that interaction energy depends on how molecules are
distributed within the volume containing them and on the number
of available configurations. Interaction energy is defined as the
amount by which the energy exceeds the value it would have if all
molecules were infinitely far apart from each other. If the total
energy is E when the molecules are contained in volume V and E0
when separated, interaction energy EI ¼ E � E0. If EI is negative
molecules are attracted to each other. If they repel each other work
must be done to bring them together and so EI is positive.

The interaction partition function QI, ignoring internal degrees
of freedom, is defined as

QI ¼
X
j

Uje
�EI;j=kT : (1)

where N is the number of molecules, T is temperature, Uj is the
number of configurations with interaction energy EI,j, k is Boltz-
mann's constant. The configurational degeneracy U is defined as
U ¼ P

jUj.
A configurational degeneracy weighted interaction energy is

defined as

e�EI=kT ¼
P

jUje
�EI;j=kT

U
: (2)

This allows the Helmholtz free energy FI to be written as

FI ¼ EI � RT ln U ¼ EI � TSc: (3)

where Sc ¼ RlnU is the configurational entropy. The equilibrium
value of the interaction energy UI is

UI ¼ �T2vðEI=TÞ=vT ¼ EI � TvEI=vT ¼ EI þ TST : (4)

where ST ¼ �vEI/vT is the thermal entropy.
The Bragg-Williams lattice gas, BWLG, is the simplest lattice

model and serves to illustrate important aspects of a MFLF [5]. In it
molecules are assumed to exist in a one dimensional lattice, with
one molecule per lattice site, see Fig. 1. All lattice sites have the
same fixed size. Compressibility is modeled by allowing some of the
sites to be vacant. Only nearest neighbors contribute to the inter-
action energy. There is no interaction between vacant sites and
between vacant sites and occupied sites. Molecules are assumed to
be randomly distributed in the lattice.

In a lattice with M sites and N molecules, see Fig. 1(b), the
configurational degeneracy is U ¼M!/(M � N)!/N! and the number
of nearest neighbors is Nq. Where q ¼ N/M is the occupied site
fraction. The total interaction energy is Nqw; where the w is the
interaction energy between two nearest neighbor molecules.

The BWLG can be improved by assuming that a molecule oc-
cupies r contiguous sites, see Fig. 1 (c). The configurational de-
generacy is now U ¼ ((M � rN) þ N)!/(M � rN)!/N!. The number of
nearest neighbors isM((1� l)q)2/(1� lq). Where l¼ (r� 1)/r is the
ratio of intramolecular bonds to total bondsmade by themolecules.
lq is the probability that two adjacent sites are occupied by seg-
ments from the samemolecule, see Guggenheim's eq. (3.5) [11]. It is
also the probability that any link between two adjacent lattice sites
is an intramolecular bond. And 1 � lq is the probability that any
given link is not an intramolecular bond. Bonds can be between
individual segments in the same molecule, individual segments in
different molecules, vacant sites and between a vacant site and an
individual molecular segment. The configurational degeneracy,
using Stirlings approximation of a logarithm, can be written as

U ¼ zN
M!ðlqÞðr�1ÞNð1� lqÞM�ðr�1ÞN

ðM � rNÞ!ðrNÞ! : (5)

where z is a constant characteristic of a molecule and is not used in
determining thermodynamic properties. In words eq. (5) shows
that the configurational degeneracy can be obtained by first
calculating the number of configuration available to all segments
treated as though they were not attached to molecules. Then to
reduce this number by the probability that there are (r � 1)N
intramolecular bonds and by the probability that there are
M � (r � 1)N other types of nearest neighbor bonds.

In Flory's original theory [10] compressibility is ignored and so
vacant lattice sites are replaced by solvent molecules. His config-
urational degeneracy is obtained from eq. (5) by assuming that the
probability of an intramolecular bond is small so that 1 � lq z 1.
This is appropriate at low density. It overestimates the available
configurations because it fails to exclude impossible configurations
inwhich segments from the samemolecule occupy the same lattice
site [10]. Despite this mathematical simplification Flory's model
accurately describes the nontrivial power law nature of polymer
properties for dilute through semi dilute solutions [8].

Guggenheim's configurational degeneracy [11] for random
mixtures attempts to exclude those impossible configurations
allowable in Flory's model. To do this he introduced the quantity
zq ¼ zr � 2(r � 1) which gives the number of sites adjacent a
molecule that are not occupied by segments from the same mole-
cule. He uses zq to work out the probability of the different ways
two adjacent sites can be occupied provided the molecule is a
simple linear chain. He derived his equation for U by equating the
rates of evaporation and condensation at low pressures for a
mixture in vapor liquid equilibrium using the site occupancy
probabilities. He used an argument similar to the one used by
Langmuir to derive the Langmuir adsorption isotherm [13]. Gug-
genheim'sU can be obtained from eq. (5) by assuming that the ratio
of intramolecular bonds to total bonds made by the molecules is
l ¼2(r � 1)/z/r and assuming the total number of nearest neighbor
bonds other that intramolecular bonds is zM/2 � (r � 1)N. Unfor-
tunately the resulting equation for U predicts negative configura-
tional entropy at typical liquid densities [10,14]. At low density it is
nearly the same as Flory's equation. The same unphysical result
occurs in Guggenheim's quasi-chemical approximation [14e16].
Attempts to correct this are given in Refs. [8,14,16].

The fact that these two models are still in use today is a testa-
ment to the enormous mathematical simplification, achieved by

Fig. 1. A pure component in a one dimensional lattice. a) Empty lattice. b) Partially
occupied lattice r ¼ 1. c) Partially occupied lattice r ¼ 3.
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