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A B S T R A C T

Use of intelligence based approach formodeling of crude oil saturationpressure is viable alternative since
this parameter plays influential role in the reservoir calculation. The objective of current study is to
develop a smart model based on fusing of support vector regression model and optimization technique
for learn the relation between the saturation pressure and compositional data viz. temperature,
hydrocarbon and non-hydrocarbon compositions of crudes, and heptane-plus specifications. The
optimization methods improve performance of the support vector regression (SVR) model through
finding the proper value of their free parameters. The optimizationmethods which embedded in the SVR
formulation in this study are genetic algorithm (GA), imperialist competitive algorithm (ICA), particle
swarm optimization algorithm (PSO), cuckoo search algorithm (CS), and bat-inspired algorithm (BA). The
optimized models were applied to experimental data given in open source literatures and the
performance of optimization algorithm was assessed by virtue of statistical criteria. This evaluation
resulted clearly show the superiority of BA when integrated with support vector regression for
determining the optimal value of its parameters. In addition, the results of aforementioned optimized
models were comparedwith currently available predictive approaches. The comparative results revealed
that hybrid of BA and SVR yield robust model which outperform other models in term of higher
correlation coefficient and lower mean square error.

ã2015 Elsevier B.V. All rights reserved.

1. Introduction

Reservoir fluid properties are overarching in petroleum
engineering computations, such as, material balance calculations,
well test analysis, reserve estimates, inflow performance calcu-
lations, and numerical reservoir simulations [1]. Among reservoir
fluid properties, saturation pressure has utmost importance.
Saturation pressure of crude oil is assigned to certain pressure
that first bubble of gas is appeared in it [2]. Owing to great
importance of saturation pressure, accurate calculation of these
parameters is essential. Saturation pressure values are determined
by laboratory experiments performed on samples of actual
reservoir fluids. Requirement the large amount of time and money
for experimentally measurement of saturation pressure are main
motivation for developing models to estimating of these param-
eters from easy measured data [1]. Hence, modeling of saturation
pressure based on easy obtained data has drawn substantial
research attention in the last decade. There are a large number of

previous studies relating with saturation pressure prediction in
which three main groups of models are introduced. The three
models are thermodynamic based models [3–4], models based on
production data [1,5–38], andmodels based on compositional data
[4,39–45].

Thermodynamic approach (Peng–Robinson (PR) and Soave–
Redlich–Kwong (SRK) equation of state) is a well-known approach
for modeling of saturation pressure. Employment of thermody-
namic approaches is required to characterization and splitting the
heavy fraction of crude oil. Moreover, these models cannot predict
the saturation pressure with good precision. This drawback
restricts the application of thermodynamic models for modeling
of saturation pressure [3–4].

In the last years, a series of empirical correlations as well as soft
computing models have been developed for making quantitative
formulation between saturation pressure and production data
including reservoir temperature, solution gas–oil ratio, oil gravity,
and gas relative density [1,5–38]. The disadvantage of this category
of models is that they are not globally which mean produce
misleading results for crude oil of regions where their data are not
used for constructing of model. Therefore these models are not
suitable for prediction of saturation pressure.
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Hitherto, various researchers are tried tomodeling of saturation
pressure as a function of compositional data [4,39–45]. Composi-
tional data which is used for modeling of saturation pressure are
temperature, hydrocarbon and non-hydrocarbon compositions of
crudes, and heptane-plus specifications. Elsharkawy (ELSH)
present empirical equation to predicting the saturation pressure
from compositional data [4]. Bandyopadhyoy and Sharma (BAND)
develop semi-analytical for predicting saturation pressure from
compositional data apart from nitrogen fraction, hydrogen sulfide
fraction, and specific gravity of the heptane plus fraction [39].
AlQuraishi (ALQ) proposed linear genetic programming to model
saturation pressure as function of compositional data [40]. They
performed impact analysis to selecting parameters that have the
highest impact on the reservoir fluid saturation pressure. An
impact analysis of AlQuraishi on the input parameters demon-
strating that the three input variables, namely the methane mole
fraction,molecular weight of the heptane plus component, and the
reservoir temperature are suitable inputs for developing linear
genetic programming based model. Farasat et al. proposed model
based on least square support vector machine for estimation of
saturation pressure as function of compositional data [41]. Kazemi
et al. developed neural network based model for predicting of
saturation pressure [42]. Ahmadi et al. used gene expression
programming finding underlying relation between saturation
pressure and compositional data [43]. Bagheripour and Asoodeh
combined the results of three models including PR EOS, SRK EOS,
and Elsharkawy through committeemachine and generate amodel
with more accuracy [44]. Lately Gholami et al. present novel
method based on committee machine (PLCM) for modeling of
saturationpressure as a function of compositional data [45]. Firstly,
they predict the saturation pressure through two individual
models viz. alternating conditional expectation (ACE) model and
support vector regression (SVR) model. Then, they fuse the
aforementioned models through committee machine. They
observed that integration of two models produce approaches
with better accuracy for estimation of saturation pressure. In
support vector regressionmodel which employed byGholami et al.
hybrid of pattern search and grid search (HPG) is used as an

optimization tool for determining the optimal values of SVR
parameters. Although this method is powerful, it required large
time for optimization implementation. Moreover, this method
cannot extract the optimal values of support vector regression
parameters. Hence, research for achieving potent optimization
method for compute the optimum values of aforementioned
parameters is still open issue.

In this study, optimized support vector regression model is
proposed for quantitative estimation of saturation pressure from
compositional data. Optimization implementation increases the
efficiency of support vector regression model through election the
optimal value of its parameters. Optimization algorithm in which
employed for improving support vector regression efficiency are
genetic algorithm (GA), imperialist competitive algorithm (ICA),
particle swarm optimization algorithm (PSO), cuckoo search
algorithm (CS), and bat inspired algorithm (BA). Finally, a statistical
error analysis has been performed on the modeling results to
investigate the feasibility and effectiveness of the proposed
methods. Also, current developed models have been compared
with previous models (thermodynamic based model, empirical
equation and intelligence based model).

2. Model description

In this section, first the literature review relevant to the SVR is
presented and then, there are some descriptions about the
optimization algorithms including: GA, PSO, ICA, CS and BA.

2.1. Support vector regression

Support vector regression (SVR) is a robust approximation
technique based on statistical learning theory [46–48]. This
method developed by Vapnik et al. and its idea is based on linear
regression in an m-dimensional feature space [49–50]. The input
xi 2 RP is first mapped onto a high dimensional feature space using
a nonlinear mapping function fðxÞ and then a linear model is
constructed in this space with a weight w and bias b term as:

Table 1
Partial dataset used in this study, including saturation pressures values and compositions of crude oils gathered from literature.

Number N2 CO2 H2S C1 C2 C3 C4 C5 C6 C7+ GRC7+ MWC7+ Temp(F) PS (psi) Reference

1 0.41 0.26 0 6.14 2.38 4.71 6.27 5.64 4.68 69.51 0.86 225 134 346 [72]
2 0.21 0.75 0.51 6.05 2.59 5.83 7.69 6.14 5.42 64.81 0.857 231 148 352 [72]
3 0.33 0.35 0 6.72 2.19 4.04 5.54 5.3 4.47 71.06 0.858 225 138 360 [72]
4 0.31 0.28 0.02 6.8 1.98 4.01 6.62 6.57 6.65 66.76 0.858 237 144 374 [72]
5 0.88 1.34 0 5.63 2.51 4.6 7.31 5.99 4.71 67.03 0.855 224 128 376 [72]
6 0.35 0.56 1.41 9.99 1.45 1.87 3.64 4.47 5.23 71.03 0.872 258 148 506 [72]
7 0.29 0.46 0.49 10.75 1.11 1.58 3.68 4.03 4.75 72.86 0.861 261 145 519 [72]
8 0.21 0.34 0 20.04 7.93 8 6.6 5.87 5.08 45.93 0.861 230 235 900 [73]
9 0.43 3.47 3.68 19.49 8.28 6.85 4.3 4.18 2.42 46.9 0.876 246 230 993 [73]

10 0.24 1.53 0.6 13.16 6.38 7.62 6.77 5.65 6.37 51.68 0.876 275 190 1140 [73]
11 0.77 1.99 1.4 17.38 6.42 7.62 5.62 4.53 5.14 49.13 0.891 267 234 1190 [73]
12 0.25 2.19 1.16 16.33 6.29 7.48 6.09 4.36 3.58 52.27 0.88 249 215 1261 [73]
13 0.17 0.56 1.93 12.59 6.05 6.51 4.26 4.52 1.14 62.18 0.877 230 239 1490 [73]
14 0.32 3.69 0.68 21.55 8.6 7.66 6.4 5.07 2.62 43.41 0.869 243 239 1591 [73]
15 0 0 0 36.15 12.17 8.05 5.81 4.79 5.24 27.79 0.722 191 212 2238 [78]
16 0 0 0 46.78 8.77 7.44 4.01 2.56 4.02 26.4 0.766 158 212 2941 [78]
17 0.65 0.02 0 45.02 12.45 8.93 6.03 3.02 1.44 22.44 0.81 184 140 3002 [80]
18 0.52 6.47 0 39.58 10.68 7.27 5.28 3.65 2.9 23.67 0.858 176 310 3627 [72]
19 0.34 7.1 0 48.43 9.24 5.84 4.39 3.21 2.28 19.17 0.805 183 314 4082 [72]
20 0.38 7.03 0 48.73 8.93 5.48 4.05 3 2.14 20.26 0.805 181 309 4156 [72]
21 0.3 0.9 0 53.47 11.46 8.79 4.56 2.09 1.51 16.92 0.864 143 176 4460 [75]
22 0 0 0 73.36 5.35 4.71 2.62 1 1.62 11.18 0.767 161 212 4742 [78]
23 0.24 0.27 0 66.83 8.28 5.15 3.31 2.04 1.85 12.03 0.8 182 215 4810 [83]
24 1.67 2.18 0 60.51 7.52 4.74 4.12 2.97 0 16.29 0.789 181 246 4823 [84]
25 0 0 0 57.53 10.16 5.83 3.28 2.71 1.4 19.11 0.81 203 212 5065 [78]
26 0.3 0.01 0 7.14 1.54 3.71 7.31 6.65 6.19 67.15 0.86 233 140 374 [72]
27 0.3 0.9 0 53.47 11.46 8.79 4.56 2.09 1.51 16.92 0.836 173 210 4460 [75]
28 0 0 0 74.18 5.32 4.67 2.58 0.97 1.56 10.72 0.766 159 212 4753 [78]
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