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a b s t r a c t

The vaporization enthalpies of petroleum fractions are required in processing and transportation ap-
plications, as well as to optimize and design oil and gas production, and in heat flux calculations. A model
was developed in this study for determining the vaporization enthalpies of pure hydrocarbon compo-
nents and petroleum fractions. The model uses a least squares support vector machine (LSSVM) algo-
rithmwhich is adjusted using a coupled simulated annealing (CSA) tuning tool. The inputs into the model
are the boiling point temperature, specific gravity, and molecular weight. A comparative study was also
undertaken between the method developed in the current study, neural network models, and some
previously published empirical correlations. The Leverage approach was used to identify probable outlier
data. It is found that only one data point from the vaporization enthalpy database in literature is an
outlier. The results obtained indicate that the proposed CSA-LSSVM method is more rapid, accurate, and
effective than available empirical correlations and neural network modeling for determination of the
vaporization enthalpies of pure hydrocarbon components, as well as petroleum fractions. The LSSVM
mathematical algorithm provides good results, as are indicated by an overall average absolute relative
deviation of the predicted property from the real data of 1.16%, and an overall squared correlation co-
efficient of 0.9982.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A simple definition of vaporization enthalpy is the difference
between the enthalpies of the vapor and liquid phases at the same
equilibrium pressure and temperature. Vaporization enthalpy
(DHvap) is the energy needed to transform a quantity of liquid
substance into a vapor phase at its boiling point temperature [1]. As
a result, the vaporization enthalpy for petroleum fractions and
hydrocarbon components is a property that is used in many
chemical disciplines, as well as is in the oil and gas industries. From
a thermodynamic perspective, vaporization enthalpies can be
applied in processing and transportation facilities for the optimi-
zation and design of oil and gas production and for heat flux

calculations, as well as the estimation of some physical phenomena
like the solubility parameters of hydrocarbons [2]. The vaporization
enthalpy of pure components, in particular hydrocarbons, and also
petroleum fractions is a key and fundamental thermodynamic
property which is related to the specific gravity (S), boiling point
temperature (Tb), and molecular weight (M) through various
thermodynamic relationships.

The vaporization enthalpy is important from both an experi-
mental and theoretical perspective because of its use in engineer-
ing optimization and design, and thus experimental techniques,
correlations, and estimation models have been developed to pro-
vide greater thermodynamic insight to assist petroleum and
chemical engineers in their work [3]. For hydrocarbon components,
Vetere [4,5] developed two empirical correlations for the calcula-
tion of vaporization enthalpy using two variables, viz. molecular
weight and normal boiling temperature. Riazi and Daubert [6]
proposed an empirical correlation for predicting the vaporization
enthalpy as a function of Tb and S. Both the Vetere and Riazi and
Daubert correlations showan estimation error of approximately 7%.

Mohammadi and Richon [2] developed a simple correlation for
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the vaporization enthalpy which is a function of the Tb and S. It is
capable of calculating the vaporization enthalpies of pure hydro-
carbon components and petroleum fractions. They also proposed
an artificial neural network (ANN) tool for comparison of the results
obtained from their empirical correlation. The results showed good
agreement between their empirical correlation, the ANN model,
and experimental values. Parhizgar et al. [1] proposed an empirical
method for determination of vaporization enthalpies of pure hy-
drocarbon components and petroleum fractions using genetic
programming which is a function of the Tb and S. Their results
indicated that their correlation can calculate the vaporization
enthalpy of both pure hydrocarbon components and petroleum
fractions with an average absolute relative deviation (AARD) of
approximately 1.35%.

Most of the available techniques for the prediction of vapor-
ization enthalpy have been based on laboratory measured data for
hydrocarbon components, and hence, may not be accurate and
reliable for petroleum fluids [2]. Furthermore, the estimation of the
enthalpy of vaporization using conventional thermodynamic
methods requires values for many adjustable parameters. In other
words, to predict thermo-physical properties, such as vaporization
enthalpy, existing thermodynamics models may have some short-
comings. The thermodynamic methods normally require accurate
characterization of reservoir fluids and petroleum fractions. Ther-
modynamic models also require reliable multiphase-
multicomponent flash calculation algorithms and accurate prop-
erties. Furthermore, some of them may have convergence prob-
lems. Consequently, there is still a need for a fast, yet robust,
predictive method for the determination of the vaporization
enthalpy for both petroleum fractions and hydrocarbon compo-
nents. To this end, smart techniques such as least square support
vector machines (LSSVM), ANN approaches, genetic algorithms,
particle swarm optimization, etc., have been successfully employed
in recent years for solving regression and classification problems in
petroleum and chemical engineering [7e16]. Therefore, in the
current study a newmodel has been proposedwhich uses a reliable
technique, namely, the least square support vector machines
(LSSVM) algorithm for the determination of the vaporization
enthalpy of pure hydrocarbon components, as well as petroleum
fractions as a function of M, S and Tb using approximately 122 data
values.

2. Vaporization enthalpies data

Vaporization enthalpy data are normally determined at the
normal Tb through an appropriate technique and are then calcu-
lated at the required temperature. There are two classes of empir-
ically derived methods for determining the vaporization enthalpy.
The first class of correlations relate the vaporization enthalpy at the
normal boiling point temperature to the critical properties and the
normal boiling point [17]. The next class of correlations relate
vaporization enthalpy to the specific gravity, molecular weight, and
the normal boiling point temperature [2]. As a result, the selection
of the most appropriate input/predictor variables, in other words,
the efficiency of the databank used for building the LSSVM models
plays a significant role in the model efficiency, accuracy and reli-
ability [18,19]. Therefore, to accurately predict the vaporization
enthalpy (DHvap, kJ/g-mol) of pure hydrocarbon and petroleum
fractions the parameters which most influence the property, viz.
the boiling point temperature (Tb, K), specific gravity, andmolecular
weight (M, g/g-mol) are gathered from literature [2,3]. The collected
databank covers an extensive range of the vaporization enthalpy,
from 19.0 to 80.1 kJ/g-mol for both petroleum fractions and pure
hydrocarbon components. Distribution of the collected data in
terms of minimum, and maximum, as well as averages are

summarized in Table 1, with the input variables being Tb, S, and M,
and the output parameter, DHvap. In the current study, the collected
vaporization enthalpy databank is randomly divided into two sub-
data sets comprising of the “Training” set (80% of the data, 98 data
points) and the “Test” set (20% of the data, 24 data points).

3. Methodology

The aim of this study was to develop a nonlinear relationship
between data reported in literature as inputs of the model (specific
gravity, boiling point temperature, and molecular weight) and its
corresponding output (vaporization enthalpies of petroleum frac-
tions and pure hydrocarbons). For this task, an appropriate pre-
dictive tool which is consistent and precise is needed. The support
vector machine (SVM) computing strategy which is based on sta-
tistical machine-learning approach which uses the structural risk
minimization principle [20] was used in this study to accomplish
the task. This mathematical algorithm is based on approaching the
upper bound of the structural risk or minimum estimation/repre-
sentation errors, and it differs from back-propagation neural net-
works in its approach to empirical risk or minimum learning errors
[21]. A SVM is a novel intelligent technique which identifies pat-
terns and analyses data. It is also used for solving regression
problems and is additionally characterized as a non-probabilistic
binary linear classifier.

Suykens and Vandewalle [20] presented a modified form of the
classical SVM to support the solutions of the classical SVM system
set of nonlinear formulas (quadratic programming). The resulting
least-squares SVM (LSSVM) [20] strategy benefits from the advan-
tages of the classical SVM system, although it only requires the
solving of a set of linear programming (linear equations) which
results in a quicker technique to the classical form/version of SVM
methodologies. As a consequence, the regression deviation for the
LSSVM mathematical methodology is computed as the difference
between the determined/estimated output and the actual values,
and is considered in addition to the tuning problem limitation.
Normally, the value of the regression deviation is adjusted during
the computations in most commonly-applied SVM plans, while it is
mathematically expressed in the LSSVM system [20,22,23]. The
penalized cost function for the LSSVM strategy employed in the
current study is expressed as follows:

QLSSVM ¼ 1
2
wTwþ g

XN
k¼1

e2k (1)

with the following constraints [20,22,23]:

yk ¼ wT4ðxkÞ þ bþ ek k ¼ 1;2;3;…:N (2)

where w expresses the regression weight or the slope of linear
regression, b expresses the intercept of the linear regression in the
LSSVM approach, g stands for the relative weight of the summation
of the regression errors in comparison with w, x denotes the input
vector for the parameters of the LSSVM approach, y is the output, ek
shows the regression deviation for N training objects, 4 stands for

Table 1
Distribution of the data used in this study for forecasting the vaporization enthalpies
of pure hydrocarbon components and petroleum fractions.

Parameter Min. Avg. Max. Type

Tb, K 231.1 451.9 722.8 Input
S 0.5 0.7 0.8 Input
M, g/g-mol 44.1 160.2 422.8 Input
DHvap, kJ/g-mol 19.0 42.1 80.1 Output
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