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A B S T R A C T

Phase equilibrium problems (phase stability testing and multiphase flash) have to be solved repeatedly,
sometimes a very large number of times, in process simulators and in compositional reservoir simulation.
The computational effort can be significant, particularly when a detailed description (with a large
number of components nc) of the mixture is required. The reduction method represent an attractive
technique in the attempt to reduce the computational time, by significantly reducing the dimensionality
of the problem, from nc� (np�1) in the conventional methods to amaximumof (2c +3)�(np�1), where
np is the number of equilibrium phases and c the number of components with non-zero binary
interaction parameters (BIP). The number of independent variables does not depend on nc, but only on c,
and the computation time increases linearly with nc. Traditionally, the reduction approaches use the
reduction parameters and the phase mole fractions as independent variables. In this work, a recent
improvement of two-phase reduced flash calculations (Nichita and Graciaa, Fluid Phase Equilib. 302,
2011, 226–233) is extended to multiphase equilibrium calculation with any number of phases. Two
approaches are proposed: (i) a direct extension of the reduction method for two-phase flashes and (ii) a
constrained minimization Gibbs free energy with respect to a specific set of variables and constraints
(taking advantage of symmetry). The proposed algorithms are tested for several multiphase systems
(with up to four phases and exhibiting complex phase envelopes) containing hydrocarbon components,
carbon dioxide and hydrogen sulfide. Numerical experiments show that the reduction methods for
multiphase flash calculations are robust and they become faster than the conventional methods when (i)
the number of components increases, (ii) the number of equilibrium phases increases and (iii) the
number of BIP families decreases. For mixtures with many components and few BIP families, the
reduction method may be at least one order of magnitude faster than conventional methods.

ã 2015 Elsevier B.V. All rights reserved.

1. Introduction

Phase equilibrium problems (phase stability testing and
multiphase flash) have to be solved repeatedly, sometimes a very
large number of times, in process simulators and in compositional
petroleum reservoir simulation (more than two equilibrium
phases can form – and play a major impact – in certain tertiary
recovery processes, such as gas injection, surfactant injection,
steam-injection, etc.). The computational effort can be significant,
and it is increasingwith the number of components in themixture.
Moreover, a single failure in thermodynamic calculations may
cause significant error propagations leading to false solutions or
failures of the simulation. Thus, it is imperative that phase
equilibrium calculation algorithms are efficient and highly robust.
Generally, pseudo-components grouping (lumping) several

individual components or heavy fractions are generated to
decrease the dimensionality of the system, leading to approx-
imations of the original problem. The lumping affects phase
distributions, bulk thermodynamic properties and the location of
phase boundaries. In a multiphase context, the existence and
position of tiny three- or four-phase regions onphase diagrams can
be highly influenced by lumping [1]. The lumping is more severe in
compositional reservoir simulations, the number of components
being typically limited to a dozen.

The resolution of the multiphase split problem is based on the
minimization of the Gibbs free energy [2]. Phase stability analysis,
consisting in the minimization of the tangent plane distance (TPD)
function [3] plays a key role in the initialization of multiphase
flashes.While for two-phase flash calculation the stability is tested
at most twice (Michelsen’s two-side initialization [2]), in a
multiphase context multiple initial guesses are required for phase
stability [2,4,5]. If conventional variables are used (theminimum is
sought in the compositional space) a nonlinear system of
nc� (np�1) equations must be solved. Usually, phase mole
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numbers [2] or the natural logarithm of equilibrium constants [6]
are used as independent variables. A combination of successive
substitution iterations (SSI) and Newton iteration is the most
commonly used; trust-region methods [6–8] represent a robust
alternative.

The so-called reduction methods [9] represent an attractive
technique in the attempt to reduce the computational time, by
significantly reducing the dimensionality of the problem, from
nc� (np�1) to maximum (2c +3)� (np�1), where np is the
number of equilibrium phases and c is the number of components
with non-zero binary interaction parameters (BIPs) in the equation
of state (EoS) with the remaining components (for many mixtures
of interest c�nc). The basic idea behind the reductionmethod is to
express the fugacity coefficients in terms of a reduced number of
variables, instead of expressing them as a function of compositions.
The number of independent variables does not depend on nc, but
only on c, and the computer time increases linearly with the
number of components (in conventional methods this dependence
is at least quadratic).

Starting with the first proposed reduction method (Michelsen’s
three-equation flash [10], applicable for all BIPs equal to zero) and
the enunciation by Hendriks of the “reduction theorem” [9]
(stating the circumstances under which the dimensionality of
phase equilibrium problems can be reduced), many applications of
the reduction method have been reported for two-phase flash
calculations [11–24] and for phase stability analysis [25–29]. The
application of the reduction method in phase equilibrium
problems is restricted by the form of the mixing rules in the
EoS, that is, reduction requires that the EoS parameters (presented
in Appendix A) be linear forms (the case of the covolume B) or
decomposable into linear forms (such as the energy term A).
Several procedures to decompose the quadratic form A (Eq. (A3))
have been proposed: by spectral decomposition [12], by complet-
ing the square [11,15], by using linear transformations [16], or low-
rank approximations [17], or by minimizing the approximation
error of the parameter A [21], etc.

Recently, comparisons of conventional and reduction methods
performance for two-phase equilibrium have been carried out by
Michelsen et al. [8], HaugenandBeckner [30], Gorucu and Johns [31]
andPetitfrereandNichita [32]; thereferencereductionmethod inall
these papers was the reduced flash of Nichita and Graciaa [20]. A
commonconclusion is that thecurvescorresponding totheCPUtime
dependence on the numbers of components (linear for reduction
methods, quadratic for conventional methods) are crossing each
other at a certain value ofnc (between 15 and 20); this suggests that

Nomenclature

A EoS parameter
Ai Component EoS parameter
a Attractive parameter in the EoS
B EoS parameter, reduced variable
Bi Component EoS parameter
b Covolume in the EoS
C Reduction matrix
C Matrix of elements ð1� CijÞ
Cij Binary interaction parameter between components i and

j
c Number of components with non-zero BIPs
D Modified TPD function
ea Error functions in the reduction method
fik Fugacity of component i in phase k
f RHS vector in Eq. (23)
G Gibbs free energy
g Gradient vector
ha Coefficients in fugacity coefficients expression
ha Independent variables in reduction methods, Lagrange

multipliers
H Hessian matrix
J Jacobian matrix
Ki Equilibrium constants
L Lagrangian function
M Number of reduction parameters
M Michelsen’s objective function for solving the Rachford–

Rice equations
m Number of nonzero eigenvalues (rank of C)
nc Number of components
np Number of phases
xik Mole numbers of component i in phase k
P Pressure
Q Vector of reduction parameters
Qa Reduction parameters
Q Vector of modified reduction parameters
Qa Modified reduction parameters
q0 Eigenvectors of C
q0ai Elements of the eigenvectors of C
qai Elements of the reduction matrix
R Universal gas constant
S Euclidean norm of the error vector, proposed method
Sf Euclidean norm of the error vector based on fugacities
S Matrix of coefficients in Eqs. (23)
T Temperature
Uij Elements of the matrix U
U Matrix, ideal part of the Hessian
xik Mole fraction of component i in phase k
Y Formal mole numbers of component i in the trial phase
YT S

nc
i¼1Yi

zi Feed composition
Z Compressibility factor

Greek letters
ai 2

ffiffiffiffiffi
Yi

p
, Michelsen’s variables for stability testing

d1, d2 Parameter depending on EoS
dij Kroneker delta
D d1–d2
e Tolerance for convergence
wik Fugacity coefficient of component i in phase k
la Eigenvalues of C
v Acentric factor
ci EoS coefficient
Va, Vb Coefficients in the EoS

Fij Elements of the matrix F
F Matrix, excess part of the Hessian
uk Phase mole fractions

Subscripts
E Excess part of G
F Feed
I Ideal part of G
c Critical
i,j Component index
k,p,m phase index
r Reduced
a,b,g Reduction variable index

Superscripts
T Transposed
R (Matrix/vector) in reduction method
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