Contents lists available at ScienceDirect

Fluid Phase Equilibria

journal homepage: www.elsevier.com/locate/fluid

Study on the thermodynamic properties for ionic liquid [C₆mim][OAc](1-hexyl-3-methylimidazolium acetate)

Jie Wei, Qiu-Bo Zhang, Fang Tian, Ling Zheng, Wei Guan*, Jia-Zhen Yang

College of Chemistry, Liaoning University, Shenyang 110036, PR China

ARTICLE INFO

Article history: Received 7 December 2013 Received in revised form 28 February 2014 Accepted 10 March 2014 Available online 19 March 2014

Keywords: Acetate ionic liquid Enthalpy of solution Molar heat capacity of solution Apparent molar heat capacity

ABSTRACT

Using the solution-reaction isoperibol calorimeter, molar enthalpies of solution in water, $\Delta_{sol}H_m$, for ionic liquid [C₆mim][OAc] with different molalities were measured in the temperature range from (288.15 to 308.15 ± 0.01) K with an interval of 5 K. According to Archer's method, the values of the standard molar enthalpies of solution, $\Delta_{sol}H_m^\theta$, were obtained for [C₆mim][OAc], respectively. According to Glasser's theory of lattice energy, the hydration enthalpy of cation and anion in infinite dilution aqueous [C₆mim][OAc] was calculated, ($\Delta H_+ + \Delta H_-$) = -598 kJ mol⁻¹, at 298.15 K. The hydration enthalpy of [C₆mim]⁺, the hydration enthalpy of [C₆mim]⁺ is a little bit weaker. A linear relationship was found by plotting the experimental values of $\Delta_{sol}H_m^\theta$ against (*T*-298.15) K. The standard molar heat capacity of solution, $\Delta C_{p,m}^\theta$ = 313 J K⁻¹ mol⁻¹, was obtained from the slope of the regression line, the specific heat capacity of solution, $\Delta C_{p,m}^\theta$ = 1.38 J g⁻¹ K⁻¹, and the apparent relative molar heat capacity, ${}^{\Phi}C_p$, were also calculated for [C₆mim][OAc].

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to minuscule vapor pressure, non-flammability and dual natural polarity, ionic liquids (ILs) have been applied in many physical-chemical fields [1]. As a new-generation "greener ionic liquid", acetic acid ionic liquids (AcAILs) have attracted considerable attention from industry and the academic community because they have several unique properties including strong solubility and good catalytic properties, which are useful for an enzyme-'friendly' co-solvent for resolution of amino acids [2], ultrasonic irradiation towards synthesis of trisubstituted imidazoles [3], assisted transdermal delivery of sparingly soluble drugs [4], some catalytic reactions [5], and dissolve cellulose [6].

It is well known that enthalpy, molar heat capacity, specific heat capacity of solution, and the apparent relative molar heat capacity, ${}^{\Phi}C_p$, for [C₆mim][OAc] are the basic thermodynamic data, and these basic data, as well as other thermodynamic properties, are of great importance to any industrial processes for application of AcAILs. The density, surface tension, and other physicochemical properties for the homologue of AcAILs were previously reported [7–9]. As a continuation of our previous investigation [7–13], this paper

* Corresponding author. Tel.: +86 24 62207797; fax: +86 24 62207797. *E-mail addresses:* guanweiy@sina.com, guanweilnu@yahoo.com.cn (W. Guan).

http://dx.doi.org/10.1016/j.fluid.2014.03.011 0378-3812/© 2014 Elsevier B.V. All rights reserved. reports that (1) Using the water as solvent, the molar enthalpies of solution for IL [C₆mim][OAc] were measured in the temperature range of (288.15 to 308.15±0.01) K with an interval of 5 K. (2) The values of the standard molar enthalpy of solution, $\Delta_{sol}H_m^{\theta}$, for [C₆mim][OAc] in the temperature range of (288.15 to 308.15±0.01) K were obtained according to of Archer's method [14], and the hydration enthalpy of cation and anion in infinite dilution aqueous [C₆mim][OAc] was obtained at 298.15 K according to Glasser's theory of lattice energy. The hydration enthalpy of the cation, ΔH^+ ([C₆mim]⁺), was obtained at 298.15 K. (3) The standard molar heat capacity of solution, $\Delta C_{p,m}^{\theta}$, for [C₆mim][OAc] was obtained from the slope of the straight line of $\Delta_{sol}H_m^{\theta}$ vs. (*T*–298.15) K, the specific heat capacity, ${}^{\phi}C_p$, were also calculated for [C₆mim][OAc].

2. Experimental

2.1. Chemicals

KCl was placed into a vacuum oven and baked at 408.15 K for 6 h before use, as well as THAM (Tris-(hydroxymethyl) aminomethane) for 6 h. The ultrapure water was used. Pure IL [C₆mim][OAc] was purchased, the water content (w_2 is the water mass fraction, $w_2 < 0.005$) in the ILs was determined by use of a Karl Fischer

Table 1

The source	and	purity	of the	materials
The source	anu	purity	or the	materials.

Chemical name	Source	Purification method	Mass fraction purity (%)	electrical resistivity, $(M\Omega cm)$
KCl THAM (Tris-(hydroxymethyl) aminomethane) [C6mim][OAc] Acetic acid Halogen	Shenyang Reagent Co. LTD Shenyang Reagent Co. LTD Lanzhou Institute of Chemical Physics	No further purification No further purification No further purification	>0.9999 >0.9997 ≥0.99 <0.002 <0.0012	
H ₂ O	Ultrapure water			18.2

moisture titrator (ZSD-2 type). The source and purity of the materials and the mass fraction contribution of the impurities for $[C_6 \text{mim}][OAc]$ are listed in Table 1.

2.2. Determination of enthalpy of solution

An on-line solution-reaction isoperibol calorimeter system was developed based on calorimetric apparatus previously reported in literature [15–17]. The calorimeter consists of a set of water thermostat, a 200 ml pyrex-glass plated silver Dewar, a 4 ml glass sample cell, a calibration heater, a glass-sheathed thermistor probe, an amplifier, a circuit used as an A/D converter and a personal computer for data acquisition and processing. The detailed experimental procedure has been described elsewhere [11].

The performance and accuracy of the calorimetric system were examined by measuring the molar enthalpy of solution of KCl in water and THAM [Tris-(hydroxymethyl) aminomethane] in 0.1 mol dm⁻³ HCl (aq) at (298.15 ± 0.01) K. The mean molar solution enthalpies are $\Delta_{sol}H_m = (17,542 \pm 31) \text{ Jmol}^{-1}$ for KCl and $(-29,794 \pm 28) \text{ Jmol}^{-1}$ for THAM, which were in good agreement with the corresponding published data: $(17,536 \pm 9) \text{ Jmol}^{-1}$ for KCl [18,19] and $(-29,739 \pm 10) \text{ Jmol}^{-1}$ for THAM [19]. The accuracy of the temperature measurement device is ±0.0001. These results suggest that the calorimeter can be used for determining molar enthalpies of solution in the study. The molar enthalpies of solution in ultrapure water of [C₆mim][OAc] with different molalities, $\Delta_{sol}H_m$, were measured at the temperature range of (288.15 to 308.15 ± 0.01) K with an interval of 5 K.

3. Results and discussion

3.1. The standard molar enthalpy of solution, $\Delta_{sol}H_m^{\theta}$, for AcAIL [C_6 mim][OAc]

The measured values of molar solution enthalpy, $\Delta_{sol}H_m$, of [C₆mim][OAc] and various molarities at (288.15 to 308.15 ± 0.01)

Table 2

Values of molar solution enthalpy for ionic liquid $[C_6 mim][OAc]$, $\Delta_{sol}H_m$ (kJ mol⁻¹), and extrapolation function, Y (kJ mol⁻¹), at 288.15 K, pressure p = 0.1 MPa.

$W^{a}\left(g ight)$	$m (m molkg^{-1})$	$-\Delta_{\rm s}H_m$ (kJ mol ⁻¹)	$\Delta T^{\rm b}$ (K)	$-Y(kJ mol^{-1})$
0.3843	0.01700	53.46 ± 0.025	0.1960 ± 0.0001	53.66 ± 0.025
0.4452	0.01970	53.31 ± 0.026	0.2112 ± 0.0001	53.53 ± 0.026
0.4839	0.02141	53.20 ± 0.029	0.2312 ± 0.0001	53.42 ± 0.029
0.5529	0.02446	53.07 ± 0.032	0.2536 ± 0.0001	53.31 ± 0.032
0.5945	0.02630	52.91 ± 0.034	0.2704 ± 0.0001	53.15 ± 0.034
0.6539	0.02890	52.79 ± 0.039	0.3128 ± 0.0001	53.05 ± 0.039
0.6872	0.03040	52.64 ± 0.040	0.3216 ± 0.0001	52.90 ± 0.040
0.7453	0.03297	52.50 ± 0.044	0.3480 ± 0.0001	52.78 ± 0.044
0.7898	0.03494	52.36 ± 0.047	0.3744 ± 0.0001	52.64 ± 0.047
0.8548	0.03782	52.18 ± 0.048	0.3848 ± 0.0001	52.47 ± 0.048
0.9054	0.04006	52.04 ± 0.051	0.4064 ± 0.0001	52.34 ± 0.051
0.9818	0.04344	51.90 ± 0.054	0.4344 ± 0.0001	52.21 ± 0.054

^a Sample mass, $W = \pm 0.0001$, $m = \pm 5.04 \times 10^{-6}$.

^b Experimental temperature difference, $\Delta T = \pm 0.0001$.

Table 3

Values of molar solution enthalpy for ionic liquid $[C_6 \text{mim}][OAc]$, $\Delta_{\text{sol}} H_m$ (kJ mol⁻¹), and extrapolation function, Y (kJ mol⁻¹), at 293.15 K, pressure *p* = 0.1 MPa.

W ^a (g)	$m (\mathrm{mol}\mathrm{kg}^{-1})$	$-\Delta H_m$ (kJ mol ⁻¹)	ΔT^{b} (K)	$-Y(kJ mol^{-1})$
0.3809	0.01685	52.11 ± 0.023	0.1824 ± 0.0001	52.33 ± 0.023
0.4638	0.02050	51.98 ± 0.027	0.2144 ± 0.0001	52.22 ± 0.027
0.5021	0.02221	51.85 ± 0.027	0.2176 ± 0.0001	52.10 ± 0.027
0.5497	0.02430	51.69 ± 0.030	0.2368 ± 0.0001	51.95 ± 0.030
0.6079	0.02690	51.54 ± 0.034	0.2696 ± 0.0001	51.81 ± 0.034
0.6597	0.02919	51.40 ± 0.038	0.3000 ± 0.0001	51.68 ± 0.038
0.7139	0.03159	51.22 ± 0.040	0.3208 ± 0.0001	51.51 ± 0.040
0.7734	0.03421	51.08 ± 0.043	0.3456 ± 0.0001	51.39 ± 0.043
0.8317	0.03680	50.93 ± 0.046	0.3704 ± 0.0001	51.25 ± 0.046
0.8971	0.03970	50.80 ± 0.051	0.4064 ± 0.0001	51.12 ± 0.051
0.9354	0.04139	50.64 ± 0.051	0.4096 ± 0.0001	50.98 ± 0.051
0.9787	0.04330	50.49 ± 0.053	0.4248 ± 0.0001	$\textbf{50.83} \pm \textbf{0.053}$

^a Sample mass, $W = \pm 0.0001$, $m = \pm 5.04 \times 10^{-6}$.

^b Experimental temperature difference, $\Delta T = \pm 0.0001$.

K are listed in Tables 2–6 suggesting that the dissolution process of the AcAIL is a typical exothermal.

According to Archer's method [14], in terms of a Debye–Hückel limiting term, the values of the standard molar enthalpy of solution for $[C_6 \text{mim}][\text{OAc}]$, $\Delta_{\text{sol}} H_m^{\theta}$, can be obtained using the following equation at the given temperature:

$$Y = \Delta_{\rm sol} H_m - \left(\frac{A_H}{b}\right) \ln\left(1 + bI^{1/2}\right) = \Delta_{\rm sol} H_m^{\theta} + \beta m \tag{1}$$

where *m* is molality, *I* is ionic strength (*I*=*m* for the 1:1 electrolyte [C_6 mim][OAc]), b is a constant to be 1.2 [20], A_H is the Debye–Hückel parameter for enthalpy and its value at different temperatures was taken from the literature [20], β is empirical constant, *Y* is extrapolation function calculated from experimental data and are listed in Tables 2–6. According to Eq. (1), plotting the values of *Y* against various molarities, the good straight lines were obtained (see Fig. 1). The values of $\Delta_{sol}H_m^{\theta}$ and β were obtained from the intercepts and the slopes of linear regressions, respectively, and the values of the correlation coefficients, *r*, and the

Values of molar solution enthalpy for ionic liquid $[C_6 mim][OAc]$, $\Delta_{sol}H_m$ (kJ mol⁻¹), and extrapolation function, Y (kJ mol⁻¹), at 298.15 K, pressure p = 0.1 MPa.

$W^{a}\left(\mathbf{g} ight)$	$m (\mathrm{mol}\mathrm{kg}^{-1})$	$-\Delta_{\rm s} H_m$ (kJ mol ⁻¹)	$\Delta T^{\rm b}$ (K)	$-Y(kJ mol^{-1})$
0.4094	0.01811	50.58 ± 0.022	0.1776 ± 0.0001	50.89 ± 0.022
0.4501	0.01991	50.46 ± 0.024	0.1928 ± 0.0001	50.73 ± 0.024
0.5026	0.02224	50.34 ± 0.027	0.2144 ± 0.0001	50.63 ± 0.027
0.5604	0.02480	50.17 ± 0.029	0.2344 ± 0.0001	50.46 ± 0.029
0.6008	0.02658	50.02 ± 0.031	0.2472 ± 0.0001	50.32 ± 0.031
0.6557	0.02901	49.89 ± 0.033	0.2600 ± 0.0001	50.20 ± 0.033
0.7003	0.03098	49.79 ± 0.036	0.2840 ± 0.0001	50.05 ± 0.036
0.7525	0.03329	49.67 ± 0.039	0.3088 ± 0.0001	49.94 ± 0.039
0.8078	0.03574	49.55 ± 0.041	0.3246 ± 0.0001	49.82 ± 0.041
0.9012	0.03987	49.32 ± 0.045	0.3624 ± 0.0001	49.67 ± 0.045
1.0157	0.04494	49.15 ± 0.051	0.4072 ± 0.0001	49.53 ± 0.045
1.1374	0.05032	48.91 ± 0.056	0.4488 ± 0.0001	49.38 ± 0.056

^a Sample mass, $W = \pm 0.0001$, $m = \pm 5.04 \times 10^{-6}$.

^b Experimental temperature difference, $\Delta T = \pm 0.0001$.

Download English Version:

https://daneshyari.com/en/article/201294

Download Persian Version:

https://daneshyari.com/article/201294

Daneshyari.com