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This study introduces the application of nature-inspired metaheuristic algorithms for performing critical
point calculations in multicomponent reservoir fluids. These algorithms are Monkey — Krill Herd Hybrid
(MAKHA), Intelligent Firefly Algorithm (IFA), Covariance Matrix Adaptation Evolution Strategy (CMAES),
Artificial Bee Colony (ABC), Cuckoo Search (CS), Bare Bones Particle Swarm Optimization (BBPSO) and
Flower Pollination Algorithm (FPA). Capabilities and limitations of these optimizers have been analyzed

using black oil, volatile oil, and condensate reservoir fluids with fifty components. Results showed that
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BBPSO, IFA and FPA outperformed other nature-inspired methods for critical point calculations in tested
fluids. In particular, BBPSO offered the best efficiency-reliability tradeoff for the accurate prediction of
critical points in multicomponent mixtures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the petroleum industry, the use of reservoir simulation tools
is a vital step for the prediction of the types of fluids and number of
hydrocarbon phases flowing through porous media. These data are
essential to facilitate the design of the equipment used for the
production and treatment of these fluids. The reservoir simulation
process includes the calculation of the critical point(s) and the
phase envelope of the fluid to allow the determination of the
flowing phase (liquid or gas, or mixed phase) based on the oper-
ating conditions of the reservoir (above or below the critical point)
[1]. Simulation software can be used to calculate the critical point of
the different streams at different points of the process including
production and upstream field operations. The design of the
treating facilities is based on whether the flowing fluid is in liquid,
gas or mixed phase. Consequently, the critical points of multi-
component mixtures need to be accurately and efficiently calcu-
lated for a reliable simulation of oil and gas reservoirs.

Critical point calculation is a relevant and very challenging
thermodynamic problem. The rigorous thermodynamic criterion
for the critical state was formulated by Gibbs [2]. Since then
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different methods have been reported for performing critical point
calculations [1,3—11] and several authors have reported that the
computation of critical points is difficult by the complex nonlinear
form of the criticality conditions especially for multicomponent
systems. Therefore, current methods can not offer a guarantee for
reliably solving critical point problems. In particular, to minimize
the complexity of the computational calculations, Heidemann and
Khalil [6] proposed equivalent forms of the criticality criteria based
on the stability of homogeneous phases, which were defined in
terms of a Taylor expansion of the Helmholtz energy. This proce-
dure avoids differentiation of determinants and requires, during
each iteration, the evaluation of only one determinant, the evalu-
ation of a set of non-linear simultaneous equations, and the eval-
uation of a triple summation function. This problem formulation is
the most widely used for critical points calculations. It is convenient
to remark that the Heidemann and Khalil method [6] employs two
nested single-variable iteration loops using a local equation solver
(i.e., Newton—Raphson), which may fail if a poor initialization is
used. In addition, this method involves the resolution of a system of
r + 2 nonlinear equations where r is the number of components of
the mixture under analysis. Therefore, the problem dimensionality
is high especially for reservoir fluids, which impacts on both effi-
ciency and reliability of solvers used for critical point calculations.

One of the numerical approaches used for calculating the critical
points of multicomponent mixtures using equations of state is to
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formulate the problem as a minimization problem where reliable
global optimizers must be employed for finding the global mini-
mum, which represents the critical point [5,12,13]. This approach
has been applied by some authors for predicting critical points in
multicomponent systems [5,12—16]. Since optimization problems
derived from thermodynamic applications, including the calcula-
tion of critical states, generally feature local minima that are
comparable to the global minimum, the need for reliable global
optimization methods is accentuated [17]. Recent advances in the
development of reliable and efficient stochastic global optimizers
[18] suggest that the procedure for the calculation of the critical
point in multicomponent systems can be significantly enhanced
with novel metaheuristics. For example, Henderson et al. [12] have
compared the performance of the stochastic global optimization
against the deterministic method of Stradi et al. [13] and they
showed that the final results were comparable and that the
computational time was significantly reduced when stochastic
methods were employed.

In particular, stochastic global optimization methods show high
probabilities to locate the global minimum within reasonable
computational costs, and thus they offer a desirable balance be-
tween reliability and efficiency for finding the global optimum
solution. Moreover, these methods do not require any assumptions
for the optimization problem at hand, are capable of addressing the
non-linearity and non-convexity of the objective function involved
in thermodynamic calculations, and are relatively easier to program
and implement, among other advantages [17]. The application of
stochastic global optimization methods for solving thermodynamic
problems has been an active area of research [17]. To date, the most
popular stochastic global optimization methods (e.g., Simulated
Annealing, Genetic Algorithms, Tabu Search, Differential Evolution,
Particle Swarm Optimization, and Ant Colony Optimization) have
been used and applied for solving phase equilibrium thermody-
namic problems [19—26]. On the other hand, recent studies have
reported the application of emerging nature-inspired optimizers
such as Bare-Bones Particle Swarm Optimization, Firefly Algorithm,
Covariance Matrix Adaptation Evolution Strategy, Shuffled Complex
Evolution Algorithm, Cuckoo Search, Monkey — Krill Herd Hybrid
Algorithm, Bat algorithm, Artificial Bee Colony and Magnetic
Charged System Search for solving phase stability and phase
equilibrium problems [27—32].

In particular, nature-inspired metaheuristics mimic natural
phenomena, especially biological systems, and they often use
multiple interacting agents. These methods are considered as
emerging algorithms, which have gained a significant attention in
engineering applications including thermodynamics [29,32].
However, the use of these methods for solving the critical point
criteria has not been studied. Note that the first methodology used
for performing the critical points via stochastic global optimization
was developed by Henderson et al. [12]. This formulation has the
capability of determining more than one critical point and allows
visualization of the critical phenomenon from the analysis of a two-
variable (Tand P) objective function, which helps to understand the
complexity involved in the determination of the critical points.
These authors applied the Simulated Annealing [12] and Differen-
tial Evolution algorithms [15] to perform the global minimization of
the proposed objective function for critical point calculations in
multicomponent systems (up to twenty nine components). It is
clear that the numerical performance of a limited number of sto-
chastic optimizers has been studied in critical point calculations
[12,14—16] and, to the best of our knowledge, state-of-the-art na-
ture-based metaheuristics have not been assessed for the resolu-
tion of this relevant thermodynamic problem. Therefore, there is a
lack of knowledge on the efficiency and reliability of these meta-
heuristics for predicting critical points in multicomponent

mixtures.

The aim of this study is to apply and assess a set of nature-
inspired metaheuristics in the calculation of critical points of
multicomponent reservoir fluids. In particular, seven of the most
promising and most recent nature-inspired optimization methods
have been studied in critical point calculations. These algorithms
are: Bare Bones Particle Swarm Optimization (BBPSO) [27], Cuckoo
Search (CS) [33], Intelligent Firefly (IFA) [34], Artificial Bee Colony
(ABC) [35], Monkey and Krill Herd Hybrid (MAKHA) [36], Covari-
ance Matrix Adaptation Evolution Strategy (CMAES) [37] and
Flower Pollination Algorithm (FPA) [38]. Performance of these
methods have been systematically analyzed using difficult critical
point problems, specifically, multicomponent petroleum reservoir
fluids from real oil fields with 50 components. These reservoir
fluids have been useful to identify the effectiveness of tested
nature-inspired stochastic methods in critical point calculations.
Results show the potential application of this type of meta-
heuristics for critical point prediction in reservoir fluids and the
opportunity areas to improve their performance are highlighted.

The remainder of this manuscript is organized as follows. A brief
description of the critical point problem, the tested nature-inspired
methods and the petroleum reservoir fluids used as cases of study
are briefly presented in Section 2. Section 3 presents the results and
discussion of the optimizer's performance in solving multicompo-
nent critical point calculations. Finally, the conclusions of this study
are summarized in Section 4.

2. Problem formulation for critical point calculations and
description of the nature-inspired metaheuristics

2.1. Objective function used for critical point calculations

The criticality criteria and the objective function reported by
Henderson et al. [12] were used in this study. These authors re-
ported a modified stability test function to develop the criticality
conditions. Assume that, in the presence of a small perturbation, an
r-component mixture with global molar composition z = (21,2, ...,
z;) is divided in two phases, i.e., the original phase and a hypo-
thetical phase. Then, the modified stability test function can be
defined as [12]

r—1
dx) = %{[u®) - 1 (@] — [ur(®) — w2 (@]}
i=1

+ [ur®) — P(2)] > 0

(1)

where x; and u;(x) are the molar fraction and the chemical potential
for each component in the hypothetical phase, and uf(z) is the
chemical potential for component i in the original phase z,
respectively. Now, considering two intervals (Tin, Tmax) and (Pmin,
Pmax) where the critical temperature and pressure of the mixture
are located, the calculation of the critical point can be formulated as
the following optimization problem

Min f(T,P) = q?(z,T,P) + c?(z,T,P) (2)

subject t0 Trpin < T < Tmax and Ppin < P < Pmax. Note that
1
q= ivzd(z) u? (3)

where Vzd(z) is the second order tensor of the derivative of Eq. (1)
and u-u = 1, respectively. Suppose that g- is the minimum value
reached by the quadratic form q and it occurs when u = u-.
Therefore, the eigenvector associated with the smallest eigenvalue
Amin of the Hessian matrix v2d(z) is given by
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