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a b s t r a c t

Optimal salinity (Sopt) is an important property that influences the relative phase volume and solubi-
lization parameters in microemulsion flooding. Selecting an appropriate surfactant for chemical flooding
with high Sopt requires characterizing lots of different chemicals and a sophisticated interpretation
procedure. The main objective of this paper is to apply quantitative structure property relationship
(QSPR) technique to model the Sopt of 20 different surfactant molecules. The surfactant molecules are
sorted into two different groups according to their experimental conditions. Geometrical optimization of
surfactants was performed at RM1 level. Then, many structural and quantum chemical descriptors were
calculated using different computer software programs. Using variable selection of the genetic algorithm
(GA-MLR), two descriptors were introduced as independent variables. The squared correlation coefficient
(R2) and standard deviation (s) calculated for the selected model were 0.940 and 0.643 for molecular
group-A; and 0.984 and 0.445 for molecular group-B, respectively. The results demonstrate high esti-
mation accuracy and strong generalization capacity of the models. The descriptors in both models are
related to polarizability and ionization potential of the molecules, thus they are conceptually related to
the changes in Sopt. The performance of QSPR was further compared with some commonly used
constitutional descriptors in previous literature reports. By comparing the results, one can conclude that
the estimation of Sopt can be improved significantly by using QSPR compared with other correlations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the development of oil fields, microemulsion flooding has
been introduced as one of the most appealing methods in chemical
enhanced oil recovery [1]. Microemulsion is a thermodynamically
stable dispersion of surfactant, oil and water (brine). It has been
used in various fields due to its very low interfacial tension (IFT)
and good solubilization capacity [2]. The phase behavior of the
surfactant-oil-brine system is one of the key properties character-
izing a microemulsion flooding [3,4]. In a microemulsion system,
phases are changed from Winsor type I to Winsor type II through
Winsor type III by salinity variation at a particular temperature and
pressure [5]. Ultralow IFT is obtained when a microemulsion
middle phase is created between the oil and water phases. Optimal
salinity (Sopt) is the salinity that indicates a minimum in IFT be-
tween oil and water phases [2,6]. Estimation of Sopt is of great
importance in designing economical microemulsion flooding [7].

Lots of efforts, which are focused on either academic research or
specific reservoir applications, have been made to identify the
microemulsion phase behavior. These studies represent that the
phase behavior mostly depends on the surfactant type [2,8e16].

A wide variety of chemicals including those designed for chal-
lenging conditions like high temperature and high salinities are
now available for the purpose of surfactant flooding [8,13,17e19].
Many different chemicals should be characterized to identify the
best surfactant formulation for a case study [5]. Therefore, a tool for
a good pre-selection of surfactants based on the reservoir condi-
tions, which makes the formulation design faster, is highly
desirable.

Estimating optimal salinity of surfactants has been studied for
several decades. A number of studies were conducted to introduce
ethylene oxide number (EON), propylene oxide number (PON) and
alkane carbon number (ACN) as surfactant descriptors [13,17,19,20].
Later, the hydrophilic-lipophilic deviation (HLD) approach was
introduced to characterize nonionic and ionic surfactant molecules
[21,22]. Besides, Solairaj proposed another correlation for surfac-
tant optimal salinity prediction, based on the HLD approach [23].* Corresponding author.
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This study added hydrophilic carbon number as another surfactant
descriptor. All these attempts have some constrains in common: (I)
The method can be applied only if the surfactant molecules contain
the functional group described in the models. (II) The aforemen-
tioned descriptors may not be a good representation of a chemical
structure. (III) There is no evidence of possible interactions between
different groups which are present in the molecules. (IV) No vali-
dation technique was used for the given correlations. Therefore, a
scientific approach is needed to structurally investigate the sur-
factants and find a correlation for optimal salinity. For this purpose,
a quantitative structure property relationship (QSPR) technique has
already been introduced.

The QSPR technique describes a mathematical relationship be-
tween structural attributes and a macroscopic property in a set of
chemicals [24]. In spite of its wide use in many chemical and bio-
logical fields of study; very few researchers have focused on sur-
factant optimal salinity predictions. Barnes et al. first proposed a
semi-empirical model for predicting optimal salinity of commercial
internal olefin sulfonate surfactants [25]. They introduced a two-
variable model with a square correlation coefficient (R2) of 0.950.
The selected descriptors were limited to thermodynamic de-
scriptors and they did not mention any model validation check in
their study. Later, Moreau et al. proposed a QSPR model for mix-
tures of industrial surfactants [26]. In their study, mixing rules were
used as a tool to calculate descriptors for each surfactant mixture.
They represented a model for each of their surfactant groups with
correlation coefficients of more than 0.9. The models had 7 and 9
variables, which made them hard to describe. Besides, their vari-
ables were not well introduced and could not be repeated or
calculated for other molecular structures. Moreover, validation was
not completely studied in their work. To summarize, earlier works
on characterizing Sopt using the QSPR method have the following
limitations in common: (I) The relationship between the selected
descriptors and dependent variables was not logically explained.
(II) The validation parameters were not fully examined.

In this article, a new model has been developed to characterize
Sopt in microemulsion systems. The modeling has been carried out
with more than 240 individual descriptors for 20 different surfac-
tant molecules. The selected descriptors of each surfactant were
correlated to provide a simple reference tool for describing the
surfactants optimal salinity. Besides the applicability domain of the
results, several validation techniques were examined. Finally, the
correlation between Sopt and some constitutional descriptors was
checked.

2. Materials and methods

The Quantitative Structure Property Relationships (QSPR)
method is a computational tool which deals with the correlation
between any measured property of a molecule and its structural
features. The method usually includes the following steps [27]: (I)
Acquiring a data set consisting of a number of molecules along with
one of their uniform properties. (II) Extracting structural properties
of each molecule in terms of different descriptors. (III) Revealing
the best models by various optional algorithms such as stepwise or
genetic algorithm. (IV) Validating the model using several valida-
tion techniques.

2.1. Data set

We initially extracted 270 different components from phase
behavior studies in the literature, each of themmight be at different
experimental condition, i.e. different temperature, oil phase
composition and surfactant concentration [2,6,13,14,17,21,
23,28,29]. In order to limit the changing variables and focus the

molecular structure descriptors, it is needed to set a data at the
same experimental condition. This approach, led to selection of 20
different surfactant molecules to be exactly at the same condition.
They were all 2 wt% surfactant solutions in the aqueous phase, n-
Decane as the oil phase and sodium chloride for the salinity scan,
and temperature is 60 �C. It's worth mentioning that this condition
is known to be representative of surfactant solution for use in
chemical EOR process at reservoir condition [5,15,17,30e34]. The
detailed microemulsion phase behavior tests have been described
before [35].

The selected components were sorted into two groups, each
having 10 molecules. Group-A contains 0.2 wt% Na2CO3 as alkaline
and Group-B contains no alkaline. Molecular modeling computa-
tions were done separately on each group. Themolecular structures
and the experimental optimal salinity values for each molecular
group are presented in Tables S1 and S2 (supplementary materials).

2.2. Computational details

Chemical structures of the selected surfactants were created
using HyperChem [36] and the molecular structures were opti-
mized to their minimummolecular energy at RM1 level. In order to
calculate the descriptors, all of the surfactants were introduced to a
proper descriptor-calculating software [37]. In addition, a collection
of quantum chemical descriptors such as the energy of the highest
occupied molecular orbital (HOMO), molecular dipole moments
and local charges, were calculated by Gaussian 98 [38]. All of the
Gaussian calculations were carried out by employing density
functional theory (DFT) at RHF/6-31G level. Finally, 1590 de-
scriptors were calculated for each molecule.

2.3. Data process and modeling

At first, the constant and pseudo constant (more than 95%
constant) descriptors were removed. To decrease the redundancy of
descriptors, a filtration process was performed to examine the
correlations among the descriptors. Among each detected inter-
correlated descriptors (i.e. R2 > 0.95), the one with the highest
correlationwith Sopt was retained and the other was removed. The
above process resulted in 241 descriptors for each molecule in
group A and 282 descriptors in group B.

Furthermore, a GA-MLR procedure was performed to select the
best models with one, two and three variables. The best models are
presented in Table 1 along with their appropriate statistical pa-
rameters. To check the co-linearity between the variables of each
model, R2 was calculated for any two descriptors. The result from
Table 2 shows that there is no significant correlation between the
descriptors in each molecular group. This means each variable
encodes different aspects of the molecular structure and three of
them can be kept.

3. Results and discussion

3.1. Model selection

Comparing the statistical parameters in Table 1 for the one
variable models, it can be observed that for both molecular groups,
the models with only one variable have a proper statistical fit and
good prediction ability. The quality of the models or the anomalies
was detected by investigating the scatter plot of experimental
versus predicted Sopt in Fig. 1. Although the plot analysis confirms
that the models with one variable can be used as predictive models,
models with two and three variables have also been discussed to
obtain a descriptive model for the surfactant optimal salinity.
Models with more than three variables were not checked because
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